## Cleanliness an underestimated area when solving problems on Safety Critical Aerospace parts

Sören Knuts, PhD, 6<sub>0</sub>BB, GKN Aerospace Engine Systems, Sweden



21th Annual Conference 13-15 September 2021

### Agenda

- Prologue-Safety first
- Prologue-Manufacturing process
- The Cleanliness Problem
- General idea on improving a cleaning process
- How to solve a problem?
- Structure of a problem- A Special Cause.
- Back to the Background flourescence problem solving
- The new approach in 2019/2020 problem solving
- Conclusion and Problem resolution
- Future improvements

### **Prologue-Safety first**

# thinkS∆FE!

All engine components are rigorously handled before they are assembled on an aircraft, in order to fulfil safety criteria.

During GKN manufacturing of components, measuring of dimensions and non destructive testing of material are performed to evaluate how the component is fulfilling its specification.

Components that deviates from specification need additional rework or are scrapped.

# Prologue-Manufacturing process

In this example a component is manufactured in following sequence:





In the **grey boxes** all operations that adds value in terms of features. In **blue box** the operation with measuring of all dimensions/features are done. In **green boxes** are the operations with non destructive testing of material In **yellow box** the first cleaning operation is performed. However also in **green boxes** cleaning operations are done, as part of the chemical processes.

## The Cleanliness Problem, an intermittent problem

The etching process is implemented by a customer standard. However to control the etching process is not completely defined by the standard. Only very limited data exists in SPC system from the process. The existing data is followed up in certain intervals and is limited to chemical concentrations on acids and detergent.

When the **problem is detected, it is reported manually** by the operators working in the Non Destructive Testing area. When the part is not clean they can not complete their work. They have to clean the part in order to complete the inspection.

When the problem is frequent and parts are queing a TASK FORCE is started!



# Not possible to find cracks in an area of Background flourescence



## General idea on improving a cleaning process

#### Following the idea's of Sinner's circle:

-one factor can be compensated by any of the three other factors.

Cleaning is mainly controlled by:

- Number of cleaning steps.
- Detergent/dish soap (surfactants)
- Temperature
- De-ionized water
- Time
- Mechnical/manual cleaning (big components)



## How to solve a problem?

- Gather a task force group- a multi disciplinary team with operators and method experts (important)
- Gather data from all observations that can be done. (challenging)
- **Map process** and its possible variations.

10110 Rev. 23

- Express hypothesis and check with data which hypothesis that need to be further worked on, and which can be deleted. (difficult)
- This is to find a reasonable **root cause that can be attacked**.
- In parallel find containment actions that acts on the problem. (big focus)

|                          | Supplier Name |                                                    |               | Supplier Code         |                                   | ened                                 | Targeted Closure                 |                                   | Date Closed                                |                    |
|--------------------------|---------------|----------------------------------------------------|---------------|-----------------------|-----------------------------------|--------------------------------------|----------------------------------|-----------------------------------|--------------------------------------------|--------------------|
|                          | GKN aeros     | space                                              |               |                       |                                   |                                      |                                  |                                   |                                            |                    |
| 5                        |               | 0                                                  | 1             |                       | 3                                 | 4                                    | 5                                | 6                                 | 7                                          | 8                  |
| Progress Track           | Discipline    | Implement<br>Immediate<br>containment<br>and prep. | Form the team | Define the<br>Problem | Develop<br>Containment<br>Actions | Identify and<br>verify Root<br>Cause | Identify<br>Corrective<br>Action | Implement<br>Corrective<br>Action | Define and<br>plan<br>Preventive<br>action | Recognise the team |
| Closure Date             |               |                                                    |               |                       |                                   |                                      |                                  |                                   |                                            |                    |
| Effectiveness check Date |               |                                                    |               |                       | - W                               | *                                    | •                                |                                   |                                            |                    |

#### AESQ - 8D REPORT Example of work process

## Structure of a problem- A Special Cause.

When everything works as intended, it works at its **nominal performance**.

But if something is changing the result will also possibly change. That is a Special Cause.





10110 Rev. 23

# Back to the Background flourescence problem solving

There is a "lack of data" that actually is pointing out what has happened.

What is the nominal performance? How can we see that the process is deviating?

Subjective ideas are limiting how the team can find the real solution to the problem.

#### First Task Force was run 2006.

Extensive DoE 40 different experiments were run with different settings. 5 parameters where varied, in a full factorial way.

Hard to evaluate the result.

0110 Rev. 23

#### Test chart according to DOE

(Design Of Experiment)

| KAR nr | 4398      | 7804 | 7805 | 2262      | 7806 | 1868     | 7805 | 2263 | 7807 | 7806 | 7808        | 7602        | 2263       | 7807 | 7806  | 7808 | 7602      |
|--------|-----------|------|------|-----------|------|----------|------|------|------|------|-------------|-------------|------------|------|-------|------|-----------|
| StdOrd | Alk Cleiv | Rin  | Rin  | Activatir | Rint | Anodizir | Rin  | Etc  | in v | Rint | Rin         | Hot Rin v   | Remove Blu | Rinx | Rin y | Rin  | Hot Rin - |
| 1      | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 600       |
| 2      | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | 10   | 10    | / 10 | 120       |
| 3      | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 600       |
| 4      | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 600       |
| 5      | 600       | 30   | 10   | 130       | 10   | <1 amp.  | 10   | 75   | 10   | 10   | 10          | 60          | 75         | 10   | 10    | 10   | 360       |
| 6      | 600       | 30   | 10   | 130       | 10   | <1 amp.  | 10   | 75   | 10   | 10   | 10          | 60          | 75         | 10   | 10    | 10   | 360       |
| 7      | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 10   | 600       |
| 8      | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 120       |
| 9      | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 10   | 600       |
| 10     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 🔨 10        |             | 120        | 10   | 10    | X 10 | X 120     |
| 11     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 10   | 600       |
| 12     | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 120       |
| 13     | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 120       |
| 14     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | _10  | 10    | 10   | 600       |
| 15     | 600       | 30   | 10   | 130       | 10   | <1 amp.  | 10   | 75   | 10   | 10   | 10          | 60          | 75         | 10   | 10    | 10   | 360       |
| 16     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 1(   | 120       |
| 17     | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 10   | 600       |
| 18     | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | /10  | 10    | 10   | 120       |
| 19     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 120       |
| 20     | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 120        | 10   | 10    | /10  | 120       |
| 21     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 10   | 120       |
| 22     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | /10  | 10    | 10   | 600       |
| 23     | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 120       |
| 24     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | 10   | 10    | /10  | 600       |
| 25     | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 600       |
| 26     | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | / 10 | 10    | 10   | 600       |
| 27     | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 120       |
| 28     | 900       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 10   | 120       |
| 29     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 600       |
| 30     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | K 10 | 10    | 10   | 600       |
| 31     | 300       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 10   | 600       |
| 32     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | K 10 | >30  | 10   | 10   | $\times$ 10 | $\times$ 60 | X X30      | 10   | 10    | × 10 | × 120     |
| 33     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 10   | 120       |
| 34     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 19   | 120  | 10   | 10   | 10          | 60          | 120        | 10   | ×10   | 10   | 600       |
| 35     | 600       | 30   | 10   | 130       | 10   | <1 amp.  | 10   | /5   | 10   | 10   | 10          | 60          | 75         | 10   | 10    | 10   | 360       |
| 36     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 120  | 10   | 10   | 10          | 60          | /120       | 10   | 10    | A 10 | 120       |
| 37     | 600       | 30   | 10   | 130       | 10   | <1 amp.  | 10   | 75   | 10   | 10   | 10          | 60          | 75         | 10   | 10    | 10   | 360       |
| 38     | 900       | 30   | 10   | 210       | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 30         | 10   | /10   | 70   | 120       |
| 39     | 300       | 30   | 10   | 50        | 10   | <1 amp.  | 10   | 30   | 10   | 10   | 10          | 60          | 120        | 10   | 10    | 19   | 600       |
| 40     | 900       | 30   | 10   | 210       | 10   | Ist amp. | 10   | 120  | 10   | 10   | 10          | 60          | 30         | 10   | 10    | 1 10 | 120       |
|        |           |      |      |           |      |          |      |      |      |      |             |             | N12-0-0    | V.   |       |      |           |



More detailed understanding in physical process that affects the cleaning problem.

• Measurements on new parameters like amount of particles in bath



Figure shows enhanced particle level in a certain bath in etching process at the time period of the problem.

However there is still a measurement challenge connected to small amount of particles.



# The approach in 2019/2020 problem solving

More detailed understanding in the physical process **etching** that affects the cleaning problem.

• Measurements by scanning electron microscope to detect surface roughness structure from etching.



(SEM-SE)



**Figures** show particles that are fixed on a test component surface from the time of the problem. The surface roughness and size of pits are similar to the particle size.

Still problem due to cleaning of material sample before entering electron microscope.

## **Conclusion and Problem resolution**

#### At present:

Due to pandemic the **volume today** of the components are **significantly lower** of what we had during the period of problems. The problem of background flourescence has also not been seen as before the pandemic.

- One interpretation is that there is a correlation to the number of parts run in the process. Decreased volume of components decreased problem.
- The measurements systems has been improved in such away that it is possible to read out in the SPC system whether a problem with background flourescence has appeared or not.
- Manual measurements on amount of particles in critical bath, is done on a regular basis.

## **Conclusion and Problem resolution**

#### > New SPC-reporting

- Tendency of cleanliness data
- Combination of subjective and objective data

| Etchir                        | ng (OP 13)                          | FPI                                | (OP 14)                                                                  | Final check (OP 16)           |                                                                                                                                                                                    |  |  |  |
|-------------------------------|-------------------------------------|------------------------------------|--------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Requirement no. Estimate      |                                     | Requirement no.                    | Estimate                                                                 | Requirement no.               | Estimate                                                                                                                                                                           |  |  |  |
| Cleanliness before<br>etching | *0 = Clean cloth<br>*1 = Grey cloth | Hard to clean                      | *0 = Easy to clean<br>*1 = Hard to clean                                 | Cleanliness at final<br>check | *0 = Clean part<br>*1 = Runnings with<br>particles<br>*2 = Runnings with<br>etching<br>*3 = Other type of<br>uncleanliness<br>*4 = Uncleanliness that<br>affects the delivery (Q4) |  |  |  |
| Cleanliness after<br>etching  | *0 = Clean cloth<br>*1 = Grey cloth | Sufectant rests(Blue)              | *0 = No rests<br>*1 = Rests of surfectant                                |                               |                                                                                                                                                                                    |  |  |  |
|                               |                                     | Background<br>flourescence (Green) | *0 = No rests<br>*1 = Rests of BF<br>*3 = Not possible to<br>inspect(Q3) |                               |                                                                                                                                                                                    |  |  |  |

## Future improvements to be explored

#### **Particle measurements**

- > SITA CleanoSpector
  - Organic pollution
  - UV-light
  - SPC-program

#### **Concentration measurements**

- > SITA
  - Measurement of <u>active</u> surfectant content
  - SPC-program
- > Choices
  - 1. Stationary Pro Line T15
  - 2. Mobile DynoTester









# QUESTIONS?