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A brief description

In this work the focus is placed on:

individual univariate short horizon data

detecting persistent shifts without phase I calibration (self-starting)

Our proposal:

is based on Shiryaev’s process (1963)

relaxes the strict assumption of known parameters

detects a potential change point (At Most One Change - AMOC
scenario) and provides posterior inference for all parameters of interest.
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Self-starting Shiryaev (3S)

Assuming the “At Most One Change (AMOC)” model we have:

xn = (x1, x2, ..., xn) is a random sample of data, obtained sequentially

θ is the vector of the In Control (IC) unknown parameter(s)

φ is the vector of the Out Of Control (OOC) unknown parameter(s)

g(θ,φ) is a known link function that represents the OOC scenario

τ is the unknown change point

The likelihood will be:

f (xn|θ,φ, τ) =


f (xn|θ,φ, τ ≤ n) =

τ−1∏
i=1

f (xi |θ)
n∏

i=τ

f (xi |g(θ,φ)) if τ ≤ n

f (xn|θ, τ > n) =
n∏

i=1

f (xi |θ) if τ > n
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Self-starting Shiryaev (3S)

The stopping time is based on the posterior marginal probability of a
change point occurrence, which is:

p (τ ≤ n|xn) =
f (xn|τ ≤ n)π(τ ≤ n)

f (xn|τ ≤ n)π(τ ≤ n) + f (xn|τ > n)π(τ > n)

=

n∑
k=1

π(τ = k)

π(τ > n)
· BFk,n+

n∑
k=1

π(τ = k)

π(τ > n)
· BFk,n+ + 1

where BFk,n+ =
f (xn|τ = k)

f (xn|τ > n)
(Bayes Factor), compares the evidence

that the kth ≤ n observation to be the change point against the
evidence that all available n observations are IC.
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Self-starting Shiryaev (3S)

The marginal distributions involved in the computation are:

f (xn|τ > n) =

∫
Θ

f (xn|θ, τ > n)π(θ)dθ

f (xn|τ ≤ n) =

∫
Φ

∫
Θ

f (xn|θ,φ, τ ≤ n)π(θ)π(φ)dθdφ

If the prior π(θ) is improper, we sacrifice the s first observations x:s

needed to make the posterior p(θ|x:s) proper and then replace the
prior π(θ) by p(θ|x:s).
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Self-starting Shiryaev (3S)

Stopping times T (·):

Constant decision limit p∗

T (p∗) = inf {n ≥ 1 : p (τ ≤ n|xn) ≥ p∗}

Adapted decision limit p∗n

T (p∗n) = inf

n ≥ 1 : p (τ ≤ n|xn) ≥ p∗n =

K ·
n∑

k=1

π(τ = k)

π(τ > n)

K ·
n∑

k=1

π(τ = k)

π(τ > n)
+ 1


where p∗ and K are chosen with respect to the false alarm tolerance.

Apart from change point detection, we can also provide inference for
the unknown parameters:{

pIC (θ|xn) if a change point did not occur

pOOC (θ,φ, τ |xn) if an alarm is raised
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Self-starting Shiryaev (3S)

IC scenario (τ > n) OOC scenario (τ ≤ n)

f (xn|θ, τ > n) f (xn|θ,φ, τ ≤ n)

π (θ) π (τ) π (φ)

f (xn|τ > n) f (xn|τ ≤ n)

p(τ ≤ n|xn)

pIC (θ|xn) pOOC (θ,φ, τ |xn)
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U3S for the Normal mean

Model parameters

θ =
(
θ1, θ

2
2

)
: the mean and the variance of the data

φ = δ: the magnitude of a mean step change

g(θ,φ) = θ1 + δ · θ2

Model states

IC state: xi |θ
iid∼ N

(
θ1, θ

2
2

)
OOC state: xi |(θ,φ)

iid∼ N
(
θ1 + δ · θ2, θ

2
2

)
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Prior setting

π (θ) ∝ L (θ|Y )α0 π0 (θ) (power prior, Ibrahim 2000), where:

Y = (y1, ..., yn0) is the vector of the historical data (if available),

0 ≤ α0 ≤ 1 is fixed and controls the influence of the historical data,

π0 (θ) = NIG (µ0, λ, a, b) (Normal-Inverse-Gamma) the initial prior.

δ = γ · δ1 + (1− γ) · δ2 (mixture of shifts), where:

δi ∼ N
(
µδi , σδi

2
)
,

γ ∼ Ber(π),

π is the prior probability of the shift δ1 in the mixture.

τ ∼ DW (p, β) (Discrete Weibull), where

τ is the location of a potential change point,

p is the probability for an observation to be OOC,

β controls the hazard function,

if β = 1 then τ ∼ G (p) (Geometric)
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Posterior distributions

Under the IC scenario the posterior distribution is:

(θ1, θ
2
2)|(τ > n,xn) ∼ NIG

(
λµ0 + X1:n

λ+ n
, λ+ n, ap, bp

)
where Xt1:t2 =

t2∑
i=t1

xi , ap = a +
n

2
and bp = b +

1

2

(
n∑

i=1

(xi − x̄)2 +
λn

λ+ n
(x̄ − µ0)2

)

Under the OOC scenario the posterior distributions are:

θ1|(θ2
2, δ, τ ≤ n,xn) ∼ N

(
λµ0 + X1:n − nτδθ2

λ+ n
,
θ2

2

λ+ n

)

p
(
θ2

2 |θ1, δ, τ ≤ n,x
)
∝
(

1

θ2
2

)ap+ 3
2

exp

{
−

2b + S2
1:n + λ (θ1 − µ0)2

2θ2
2

−
(Xτ :n − nτ θ1) δ

θ2

}

where nt = n − t + 1 and S2
t1:t2

=
t2∑

i=t1

(xi − θ1)2
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Posterior distributions

δi |
(
θ1, θ

2
2, τ ≤ n,xn

)
∼ N

(
µδpi , σ

2
δpi

)

γ|
(
θ1, θ

2
2, δi , τ ≤ n,xn

)
∼ Ber

 π

π + (1− π) · exp

{
µ2
δp2

2σ2
δp2

−
µ2
δp1

2σ2
δp1

}
σδp2

σδp1



p
(
τ = k|θ1, θ

2
2 , δ,xn

)
=

exp

{
δ (Xk:n − nkθ1)

θ2
−

nkδ
2

2

}(
(1− p)(k−1)β − (1− p)k

β
)

n∑
j=1

exp

{
δ
(
Xj :n − njθ1

)
θ2

−
njδ

2

2

}(
(1− p)(j−1)β − (1− p)jβ

)

where µδpi =
µδi + σ2

δi (Xτ :n − nτθ1) /θ2

1 + nτσ2
δi

and σ2
δp1 =

σ2
δi

1 + nτσ2
δi
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Application to real data

Data description:

We use the dataset analyzed by Hawkins (1987). Due to confidentiality
issues, the standardized dataset was presented in the paper, subtracting
the mean and dividing by the standard deviation.

It refers to n = 55 chemical laboratory that carries out routine indirect
(instrumental) assays for precious metals of batches of a feedstock. As
a control measure, a sample of a standard reference material is assayed
along with each batch of unknowns.

The observations arrive sequentially, assuming:

Xi |θ
iid∼ N

(
θ1, θ

2
2

)
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It refers to n = 55 chemical laboratory that carries out routine indirect
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a control measure, a sample of a standard reference material is assayed
along with each batch of unknowns.

The observations arrive sequentially, assuming:

Xi |θ
iid∼ N

(
θ1, θ

2
2

)

ENBIS-21 U3S September 14, 2021 12 / 23



Application to real data

Non-informative prior setting:

π(θ) ∝ 1/θ2
2 ≡ NIG (0, 0,−1/2, 0) (reference prior, Bernardo, 1979)

δ|γ ∼ γ · N(1, 0.252) + (1− γ) · N(−1, 0.252)

γ ∼ Ber(1/2)

τ ∼ DW (1/55, 1) ≡ G (1/55)

Decision limit elicitation:

We set pn
∗ to control PFA = 20% for n = 55 data points.
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Application to real data
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Simulation study

Competing methods:

Self-Starting CUSUM (SSC, Hawkins and Olwell, 1998),

Recursive Segmentation and Permutation (RS/P, Capizzi and
Masarotto, 2013),

Univariate Self-starting Shiryaev (U3S).

IC data:

For N = 50, we assume Xi |
(
θ1, θ

2
2

) i.i.d.∼ N
(
θ1, θ

2
2

)
, where θ1 = 0 and

θ2
2 = 1. We simulate 10, 000 iterations of each random sample.

OOC scenarios:

Step changes for the mean from a N(1, 1) and initiating at location 11,
or 26, or 41.
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Simulation study

U3S prior setting (reference & constant hazard function (r,c)):

π(θ) ∝ 1/θ2
2

δ|γ ∼ γ · N(1, 0.252) + (1− γ) · N(−1, 0.252)

γ ∼ Ber(1/2)

τ ∼ DW (1/50, 1)

SSC tuning parameter:

We set k = 0.5

RS/P parameter for the maximum number of change points:

We set K = 1
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Simulation study

Performance metrics:

We select the appropriate decision limits for each method, so that all of
them will have identical Probability of False Alarm (PFA):

PFA = P (T ≤ N| τ > N) = 0.05

We estimate the Probability of Successful Detection (PSD) for each
method:

PSD (τ) = P (τ ≤ T ≤ N)

We estimate the truncated Conditional Expected Delay (tCED)

tCED(τ) = Eτ (T − τ + 1|τ ≤ T ≤ n)
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Simulation results
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Conclusions

U3S process is a generalization of Shiryaev process, enriching the
existed methodology in three ways:

allowing both the IC parameter(s) θ and the OOC parameter(s) φ to
be unknown

offering a more flexible prior for the change point τ

providing posterior inference for all the parameters of interest
regarding the IC or the OOC scenario.

Compared to the Frequentist based and Nonparametric alternatives,
U3S:

achieves greater detection percentages

has similar or smaller detection delay

is more resistant in absorbing an OOC scenario.
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