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In this work the focus is placed on:

o individual univariate short horizon data

e detecting persistent shifts without phase | calibration (self-starting)

Our proposal:

o is based on Shiryaev's process (1963)
o relaxes the strict assumption of known parameters

o detects a potential change point (At Most One Change - AMOC
scenario) and provides posterior inference for all parameters of interest.
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Self-starting Shiryaev (3S)

Assuming the “At Most One Change (AMOC)" model we have:

Tn = (x1, X2, ..., Xp) is @ random sample of data, obtained sequentially

6 is the vector of the In Control (IC) unknown parameter(s)
¢ is the vector of the Out Of Control (OOC) unknown parameter(s)
g(0, @) is a known link function that represents the OOC scenario

7 is the unknown change point
The likelihood will be:

T—1 n
f(@nl0, 6,7 < ) = J]7 (ulO) TI7 (xlg(0. ) if 7 < n
i=1 i=r

f(znl6,¢,7) = p
f(znl0,7>n) =]]f(xl0) if 7> n
i=1
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Self-starting Shiryaev (3S)

The stopping time is based on the posterior marginal probability of a
change point occurrence, which is:

f(xn|T < n)m(r < n)
f(xn|T < n)m(r < n) + f(zp|T > n)w(r > n)

p(T < n’mn) =

n

ZM'BFk N

— (7 > n)

n

=k
ZM  BFjny +1
k:17r(7' > n)

f(xn|T = k)
f(zn|T > n)
that the k™" < n observation to be the change point against the
evidence that all available n observations are IC.

where BF py = (Bayes Factor), compares the evidence
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@ The marginal distributions involved in the computation are:

f(xp|T >n) = / f(xn|0,7 > n)m(0)do
o

f(xn|m <n)= // f(xn|0, 0,7 < n)7(0)r(¢p)dOdp
®JO
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@ The marginal distributions involved in the computation are:

f(xn|T > n) = / f(xn|0,7 > n)m(0)do
e

f(xn|m <n)= // f(xn|0, 0,7 < n)7(0)r(¢p)dOdp
®JO

o If the prior m(0) is improper, we sacrifice the s first observations ;s
needed to make the posterior p(8|x,.s) proper and then replace the
prior (@) by p(0|x:s).
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e Stopping times T(-):

Constant decision limit p*
T(p*)=inf{n>1:p(7 < njzy,) > p*}
Adapted decision limit p},
(7 = k)
K.y 2V — 7/

T
k_17r('r > n)
T(pg) = inf { 0> 1 p(r < nlwn) > pf = ——=
(1T = k)
7 N S
(T > n)

k=1
where p* and K are chosen with respect to the false alarm tolerance.
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e Stopping times T (-):

Constant decision limit p*
T(p*)=inf{n>1:p(7 < njzy,) > p*}
Adapted decision limit p},

" (1 = k)

k.N 2%
— (T > n)

" r(r = k)

K (T > n)

T(p;)=inf<n>1:p(r <nlxy) > p; =

k=1
where p* and K are chosen with respect to the false alarm tolerance.

@ Apart from change point detection, we can also provide inference for
the unknown parameters:

{ pic (8]xy) if a change point did not occur
°

pooc (0, ¢, T|xy) if an alarm is raised
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@ Model parameters

6 = (61,63): the mean and the variance of the data
¢ = 6: the magnitude of a mean step change
g(0,9) =01+6-0>

o Model states
IC state: ;|6 " N (61, 62)

OOC state: x;|(0, ¢) N (6146 - 65,63)
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Prior setting

o 7(0) x L(6]Y)* 7 (0) (power prior, Ibrahim 2000), where:
Y = (y1,-..,¥n,) is the vector of the historical data (if available),

0 < ap <1 is fixed and controls the influence of the historical data,

70 (0) = NIG (po, A, a, b) (Normal-Inverse-Gamma) the initial prior.

@ =701+ (1—7)- 2 (mixture of shifts), where:
8i ~ N (psi, 05°),
v ~ Ber(r),
7 is the prior probability of the shift §; in the mixture.

e 7~ DW(p, 3) (Discrete Weibull), where
T is the location of a potential change point,
p is the probability for an observation to be OOC,

[ controls the hazard function,
if =1 then 7 ~ G(p) (Geometric)




Posterior distributions ﬂ

Under the IC scenario the posterior distribution is:
>\M0 + Xl:n
A+n

where X .t, = ZX, ap=a + " and by =b+ = <Z(X, - %)%+ 7(_ - ,uo)2>

i=ty

o (01,03)|( > n,x,) ~ NIG ( S A+, ap,bp)




Posterior distributions ﬂ i

Under the IC scenario the posterior distribution is:

>\M0 + Xl:n
(-] (91,9%”(7’ > mwn) ~ NIG <M7>\ + n, ap, bp)
2 n 1 4 5 An 5
where X .t, = i:Etlx,-, ap=a+ 5 and b, = b+ 5 ;:1 (xi — X)° + m()_( — o)

Under the OOC scenario the posterior distributions are:

Mo + Xi.n — n:66, 603
A+n "A+n

@ 01|(03,5, 7 < n,zy)~ N <

1\%*3 26+ 52 +A(01 — m0)2  (Xoen — nr1)
Op(eg\el,a,rgn,m)oc( ) ? e d + 55, + A (01— po)”  (Xrin — nrb1)

02 263 02
t
where n, =n—t+1and 2., = Z(X,’ —6,)?

i=t;
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Posterior distributions ﬂ

® 5| (01,03, 7 <nxy) ~N (Map;,agp,)

@ 7| (61,65,6i,7 < n,xn) ~ Ber

™
2
:u’ §p2 Hsp1 O§p2
1—7)- _
™+ ( 71_) exp { 20% 20_§p1 } Oop

exp {M - } (= p)*07 = (1= p)¥7)

© p(r =Ko, 0F8.an) = ——— X92 P
Zexp{(’""”) e } (= p)i=0" — (1 - py*)
- 0> 2
j=1
i+ 02 (Xrp — n01) /0 o3
where fhspi = Hsi 6:( Tin 5 T 1)/ 2 and O_gpl _ #2
1+ n;oy; 1+ n,o5;
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Application to real data el

Data description:

e We use the dataset analyzed by Hawkins (1987). Due to confidentiality
issues, the standardized dataset was presented in the paper, subtracting
the mean and dividing by the standard deviation.

o It refers to n = 55 chemical laboratory that carries out routine indirect
(instrumental) assays for precious metals of batches of a feedstock. As
a control measure, a sample of a standard reference material is assayed
along with each batch of unknowns.

e The observations arrive sequentially, assuming:

;|0 % N (01, 03)
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Non-informative prior setting:

o (@) ox 1/63 = NIG(0,0,—1/2,0) (reference prior, Bernardo, 1979)
o |y~ - N(1,0.252) + (1 — ) - N(—1,0.252)

e v~ Ber(1/2)

o 7~ DW(1/55,1) = G(1/55)
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Non-informative prior setting:

o (@) ox 1/63 = NIG(0,0,—1/2,0) (reference prior, Bernardo, 1979)
o |y~ - N(1,0.252) + (1 — ) - N(—1,0.252)

e v~ Ber(1/2)

o 7~ DW(1/55,1) = G(1/55)

Decision limit elicitation:

o We set p,* to control PFA = 20% for n = 55 data points.
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Competing methods:
o Self-Starting CUSUM (SSC, Hawkins and Olwell, 1998),

e Recursive Segmentation and Permutation (RS/P, Capizzi and
Masarotto, 2013),

o Univariate Self-starting Shiryaev (U3S).

IC data:

e For N =50, we assume X;| (61,63) N (61,63), where 6; = 0 and
63 = 1. We simulate 10,000 iterations of each random sample.

0OOC scenarios:

o Step changes for the mean from a N(1,1) and initiating at location 11,
or 26, or 41.
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U3S prior setting (reference & constant hazard function (r,c)):
o 7(6) o< 1/63
o Oy ~ - N(1,0.252) + (1 — ) - N(—1,0.252)
@ v~ Ber(1/2)
o 7~ DW(1/50,1)
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U3S prior setting (reference & constant hazard function (r,c)):
m(0) o< 1/63

Sy ~ 7+ N(1,0.252) + (1 — 7) - N(—1,0.252)

v ~ Ber(1/2)

T ~ DW(1/50,1)

SSC tuning parameter:
o Weset k=0.5
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U3S prior setting (reference & constant hazard function (r,c)):
m(0) o< 1/63

Sy ~ 7+ N(1,0.252) + (1 — 7) - N(—1,0.252)

v ~ Ber(1/2)

T ~ DW(1/50,1)

SSC tuning parameter:
o Weset k=0.5

RS/P parameter for the maximum number of change points:
o Weset K=1
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Simulation study €l

Performance metrics:

e We select the appropriate decision limits for each method, so that all of
them will have identical Probability of False Alarm (PFA):

PFA =P (T < N|7 > N) = 0.05

o We estimate the Probability of Successful Detection (PSD) for each
method:

PSD(r)=P(r < T <N)

o We estimate the truncated Conditional Expected Delay (tCED)

tCED(T) = E (T —7+17< T <n)
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Conclusions

U3S process is a generalization of Shiryaev process, enriching the
existed methodology in three ways:

o allowing both the IC parameter(s) 8 and the OOC parameter(s) ¢ to
be unknown
o offering a more flexible prior for the change point

e providing posterior inference for all the parameters of interest
regarding the IC or the OOC scenario.

Compared to the Frequentist based and Nonparametric alternatives,
u3s:

e achieves greater detection percentages
e has similar or smaller detection delay

e is more resistant in absorbing an OOC scenario.
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