Degradation model with Imperfect and worse Maintenances

Franck Corset*, Mitra Fouladirad**, Christian Paroissin***

* Université Grenoble Alpes LJK **Aix Marseille Université, École Centrale Marseille, M2P2 ***Université de Pau et des Pays de l'Adour, LMA

ENBIS Spring Meeting 2022, May 19-20, Grenoble

- We observe one system over [0, T]
- Deteriorating system (Gamma process)
- Periodic inspections (we denote n the number of inspections over [0, T])
- AGAN corrective maintenance
- Preventive maintenance (Imperfect maintenance or worse maintenance)

Definition

Worse maintenance: a maintenance action which makes the system degradation increases, i.e the degradation level just after the maintenance is greater than the degradation level just before the maintenance.

Some possible reasons:

- Repair the wrong part of the system.
- Repair (partially or completely) the faulty part but damage adjacent parts of the system.
- Human errors such as wrong adjustments and further damage done during maintenance.

< 同 > < 三 > < 三 >

The deterioration process is a Gamma process, $\{X_t, t \ge 0\}$, with shape function $a(t) = \alpha t^{\beta}$ with $\alpha > 0$ and $\beta > 0$ and scale parameter b > 0. The Gamma process $\{X_t, t \ge 0\}$ is a continuous-time stochastic process such that:

- $X_0 = 0$ with probability 1
- $X_t X_s \sim G(a(t) a(s), b)$ for all $t > s \ge 0$, with density function $\forall x \in \mathbb{R}^+$:

$$f(x) = \frac{b^{a(t)-a(s)}}{\Gamma(a(t)-a(s))} x^{a(t)-a(s)-1} e^{-bx}$$

• $\{X_t, t \ge 0\}$ has independent non overlapping increments

- $\{Y_t, t \ge 0\}$ the stochastic process of the maintained system.
- Inspection times $(t_j)_{j \in \mathbb{N}}$,
- Periodic inspections $t_j = j\tau$, $j \in \mathbb{N}$.

Maintenance decision rule

 $\bullet\,$ if $\,Y_{t_{j}^{-}}\geq M$ then an AGAN CM $\,Y_{t_{j}^{+}}=$ 0,

• if
$$L \leq Y_{t_i^-} < M$$

• imperfect PM (ARD_{∞}) with probability p, $Y_{t_j^+} = (1 - \rho)Y_{t_j^-}$, ($\rho \in [0, 1]$), • worse PM (AAD_{∞}) with probability 1 - p, $Y_{t_i^+} = (1 + \rho_w)Y_{t_i^-}$, ($\rho_w > 0$),

• if $Y_{t_i^-} < L$ no action is performed,

where L and M are fixed thresholds (0 < L < M).

- We observe $Y_{i\tau} = Y_i$, the degradation level of the system just before the *i*-th maintenance.
- The type of PM (imperfect or worse) is not observed
- Let's denote $U_i = \mathbb{1}_{L \leq Y_{i\tau} < M}$, the indicator of preventive maintenance.
- Conditionally to $U_i = 1$, let's denote $B_i = 1$ if the PM is imperfect (with probability p) and $B_i = 0$ if the PM is worse (with probability 1 p).
- B_i are not observed, independent and Bernoulli distributed, $\mathcal{B}(p)$.
- Statistical inference: EM Algorithm

通 ト イ ヨ ト イ ヨ ト

Notations

If 0 ≤ Y_{t_i⁻} ≤ L, no maintenance action is performed. Consequently, thanks to the stochastic continuity of the gamma process, P[Y_{t_i⁺} = Y_{t_i⁻}] = 0 and thus Y_{t_i⁺} ≈ Y_{t_i⁻}. Hence, in such of a case,

$$Y_{t_{i+1}^-} - Y_{t_i^-} \sim \mathcal{G}(a(t_{i+1}) - a(t_i), b).$$

• If $L \leqslant Y_{t_i^-} \leqslant M$, a PM action is performed:

$$Y_{t_{i+1}^-} - (1-
ho)^{U_i B_i} (1+
ho_w)^{U_i (1-B_i)} Y_{t_i^-} \sim \mathcal{G}(\mathsf{a}(t_{i+1}) - \mathsf{a}(t_i), b).$$

• If $Y_{t_i^-} \ge M$, a perfect CM is performed and thus the system restart as a new one with $Y_{t_i^+} = 0$.

By denoting $\Delta_i^P = \mathbb{I}_{\mathsf{Y}_{t_i}^- \geqslant M}$ (perfect maintenance), we have

$$Y_{t_{i+1}^-} - (1 - \Delta_i^{\mathcal{P}})(1 -
ho)^{U_i B_i} (1 +
ho_w)^{U_i (1 - B_i)} Y_{t_i^-} \sim \mathcal{G}(\mathsf{a}(t_{i+1}) - \mathsf{a}(t_i), b).$$

A (1) < A (1) < A (1) </p>

э

Complete Likelihood function

- Observations: $(y_i, u_i)_{i=1,...,n}$
- *b_i* are not observed
- $\theta = (\alpha, \beta, b, \rho, \rho_w, p)$

The complete likelihood function L can be written as follows:

$$L(\alpha,\beta,b,\rho,\rho_w,p;data) = \prod_{i=1}^n f_{\delta_i,b} \Big(y_{t_i^-} - (1 - \Delta_{i-1}^P)(1 - \rho)^{u_{i-1}b_{i-1}} (1 + \rho_w)^{u_{i-1}(1 - b_{i-1})} y_{t_{i-1}^-} \Big)$$

where $Y_{t_0^-} = \Delta_0^P = u_0 = b_0 = 0$ and $f_{\delta_i,b}$ is the probability density function of the gamma distribution with shape parameter $\delta_i = \alpha(t_i^\beta - t_{i-1}^\beta)$ and scale parameter b.

伺 ト イヨト イヨト

э

We denote $\mathcal{H}_{i-1} = \{Y_1, ..., Y_{i-1}, U_1, ..., U_{i-2}, B_1, ..., B_{i-2}\}$, the past of the process at time t_{i-1} .

This algorithm is an iterative algorithm and has two steps:

At step k + 1, the E-step computes the conditional expectation of the complete log-likelihood

$$\sum_{i=1} \mathbb{E}_{B_{i-1}|\mathcal{H}_{i-1}, Y_i, U_{i-1}, \theta^{(k)}} [\log(L(Y_i, U_{i-1}, B_{i-1}|\mathcal{H}_{i-1}, \theta)]$$

• The M-step maximizes this quantity:

$$\theta^{(k+1)} = \arg \max_{\theta} \sum_{i=1}^{n} \mathbb{E}_{B_{i-1}|Y_i, U_{i-1}, \mathcal{H}_{i-1}, \theta^{(k)}} [\log(L(Y_i, U_{i-1}, B_{i-1} | \mathcal{H}_{i-1}, \theta)]$$

通 ト イ ヨ ト イ ヨ ト

As B_{i-1} are Bernoulli distributed, by denoting $\tilde{p}_i = \mathbb{P}(B_{i-1} = 1 | Y_i, U_{i-1}, \mathcal{H}_{i-1}, \theta^{(k)})$, we have

$$egin{aligned} & heta^{(k+1)} = rg\max_{ heta} \left\{ \sum_{i=1}^n ilde{p}_i \ell(Y_i, U_{i-1}, B_{i-1} = 1 | \mathcal{H}_{i-1}, heta)
ight. \ &+ (1 - ilde{p}_i) \ell(Y_i, U_{i-1}, B_{i-1} = 0 | \mathcal{H}_{i-1}, heta)
ight\} \end{aligned}$$

We can compute \tilde{p}_i as follows

$$\begin{split} \bar{\rho}_{i} &= P\left(B_{i-1} = 1|Y_{i}, U_{i-1}, \mathcal{H}_{i-1}, \theta^{(k)}\right) \\ &= \frac{\rho^{(k)} f_{\delta_{i}}\left(y_{t_{i}} - (1 - \Delta_{i-1}^{P})(1 - \rho)^{u_{i}-1}y_{t_{i-1}}\right)}{\rho^{(k)} f_{\delta_{i}}\left(y_{t_{i}} - (1 - \Delta_{i-1}^{P})(1 - \rho)^{u_{i}-1}y_{t_{i-1}}\right) + (1 - \rho^{(k)}) f_{\delta_{i}}\left(y_{t_{i}} - (1 - \Delta_{i-1}^{P})(1 + \rho_{w})^{u_{i}-1}y_{t_{i-1}}\right)} \end{split}$$

くぼう くほう くほう

æ

Therefore, the conditional expectation

$$\mathbb{E}_{B|Y,U,\theta^{(k)}} \left[\sum_{i=1}^{n} \log(L(Y_{i}, U_{i-1}, B_{i-1} | \mathcal{H}_{i-1}, \theta)) \right] \text{ is}$$

$$= \sum_{i=1}^{n} \tilde{p}_{i} \ell(Y_{i}, U_{i-1}, B_{i-1} = 1 | \mathcal{H}_{i-1}, \theta) + (1 - \tilde{p}_{i}) \ell(Y_{i}, U_{i-1}, B_{i-1} = 0 | \mathcal{H}_{i-1}, \theta)$$

$$= \log(p) \sum_{i=1}^{n} \tilde{p}_{i} + \sum_{i=1}^{n} \tilde{p}_{i} \log\left(f_{\delta_{i}}(y_{t_{i}} - (1 - \Delta_{i-1}^{P})(1 - \rho)^{u_{i-1}}y_{t_{i-1}})\right)$$

$$+ \log(1 - p) \sum_{i=1}^{n} (1 - \tilde{p}_{i}) + \sum_{i=1}^{n} (1 - \tilde{p}_{i}) \log\left(f_{\delta_{i}}(y_{t_{i}} - (1 - \Delta_{i-1}^{P})(1 - \rho)^{u_{i-1}}y_{t_{i-1}})\right)$$

・ロト ・四ト ・ヨト ・ヨト

EM Algorithm

- Initialisation $\theta^{(0)}$
- At step *k* + 1:
 - Compute \tilde{p}_i

• Compute
$$p^{(k+1)} = \frac{\sum_{i=1}^{n} u_{i-1} \tilde{p}_i}{\sum_{i=1}^{n} u_{i-1}}$$

$$\sum_{i=1}^{n} \tilde{\rho}_{i}(y_{t_{i}} - (1 - \Delta_{i-1}^{P})(1 - \rho)^{u_{i}-1}y_{t_{i-1}}) + (1 - \tilde{\rho}_{i})(y_{t_{i}} - (1 - \Delta_{i-1}^{P})(1 + \rho_{w})^{u_{i}-1}y_{t_{i-1}})$$

イロト イポト イヨト イヨト

æ

 $\sum_{i=1}^{n} \delta_{i}$

- Compute $(\rho^{(k+1)}, \rho_w^{(k+1)})$ which maximize E
- Compute $(\alpha^{(k+1)}, \beta^{(k+1)})$ which maximize E

- $\tau = 1$ (inter-inspection time)
- $\alpha = 1$, $\beta = 1$ and b = 1 (Gamma process)
- ρ = 0.2
- *ρ_w* = 0.3
- *p* = 0.7
- Four case studies: $T \in 50, 100, 150, 200$
- L = 5 and M = 10 (respectively the PM and CM thresholds)
- $\theta^{(0)} = (1.2, 1.1, 1.5, 0.2, 0.2, 0.5)$ and K = 50 for EM algorithm

通 ト イヨ ト イヨ ト

Simulations

14/20

< ∃⇒

Simulations

글 🛌 😑

θ	θ^{\star}	$\hat{ heta}$ ($ extsf{T}=200$)	$\hat{ heta}$ ($ au=$ 100)	$\hat{ heta}$ ($ extsf{T}=$ 50)	$\hat{ heta}$ ($T=25)$
α	1	0.689	1.072	1.211	7.085
β	1	1.065	1.046	0.994	0.738
b	1	0.912	1.414	1.220	1.927
ρ	0.2	0.199	0.202	0.156	0.255
ρ_w	0.3	0.292	0.270	0.385	0.037
р	0.7	0.679	0.693	0.682	0.700

By setting the rule $\tilde{p}_i^K < 0.25$ then *i*th maintenance is worse,

- for T = 200, we find all the worse maintenances and only one false positif.
- for T = 100, we find all the worse maintenances and two false positives
- for T = 50, we find all the worse maintenances and no false positif
- for T = 25, we miss one worse maintenance and one false positif

Convergence of EM algorithm (T = 200)

17/20

Degradation model with Imperfect and worse Maintenances

포사 포

Histogram with 1000 replications (T = 200)

ENBIS Spring Meeting 2022, May 19-20, Grenoble Degradation model with Imperfect and worse Maintenances

2

-∢ ≣⇒

19/20

- Sensitive analysis of parameters
- Application on a real dataset
- When we observe N systems (with the same parameters)
- Stationary distribution of the Maintained System
- Maintenance optimization with unavailability cost (the failure is only observed at inspection)

Thank you for your attention

20/20

< 同 > < 三 > < 三 >

æ