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Electric batteries are everywhere. Effective management increases
vehicle availability and reduces costs

Hybrid electric city bus Autonomous electric tractor Industrial robots

Monitoring battery health is good, but predicting it is better
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Create virtual sensor for battery state of charge estimation in a
model-based design workflow

- Why Virtual Sensors ?

— When estimating a quantity that is not
measurable

Battery State of Charge (SOC)
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Agenda

Voltage SOC
: : Current
= Develop Al-based battery SOC estimation @

Temperature

= Workflow - From data acquisition to hardware deployment

ot o o ,/ | -
- Compare different Al methods » @3 » l'bal »E
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Battery State of Charge (SOC)

1 t
S0C(t) = > f I(p)dp -
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capacity current ﬁ

Afttected by sensor error
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Extended Kalman Filter

Well established current ~ voltage measurement
> >

Detailed battery model
required (operating

condition range) /lb
Kalman e
Computationally intensive Filter
battery
model voltage

estimation

— SOC
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Using Neural Network as an alternative

vollage ——

current =—————

femperature ———

Training on real data
Capture very complex
data relationships

No need for battery model

Interpretability
Computationally intensive
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Al-driven System Design

Data Preparation Al Modeling Simulation & Test Deployment

Voltage  Current Temperature
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Abstract

B attery state-of-charge (SOC) is critical information

for the vehicle energy management system and must
be accurately estimated to ensure reliable and afford-
able electrified vehicles (xEV). However, due to the nonlinear
temperature, health, and SOC dependent behaviour of Li-ion

(FNN) approach. The method includes a description of data
acquisition, data preparation, development of an FNN, FNN
tuning, and robust validation of the FNN to sensor noise.
To develop a robust estimator, the FNN was exposed, during
training, to datasets with errors intentionally added to the
data, e.g. adding cell voltage variation of £4mV, cell current
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Data Preparation
Read data
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Data were collected experimentally

UMcMgtster
niversity

Feed-forward
voltage for
current
femperature SOC
calculated moving avg voltage
calculated moving avg current accurately
calculated
in the lab

Data source https://data.mendeley.com/datasets/cp3473x7xv/3 11
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Create, configure, train & assess
Al model performance R
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Results

25°C

Test - SOC@25degC - Estimation

-10°C

Test - SOC@-10degC - Estimation
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Al Is part of a larger system
Simulate and test all components together

measuredSOC
true
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Development workflow with Model-Based Design

Traditional Design Process Model-Based Design

REQUIREMENTS REQUIREMENTS

—
______ S S t

oo - Cannot test or optimize fully integrated design - Test/fail early, continuous testing, reuse, What-if analysis
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""" » Cannot validate design against requirements - Automation, Path to implementation and production 15
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Integrate Al into MBD for system-level simulation and code generation

Data Preparation

Data cleansing and

% e T Ill‘ml preparation
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Simulink Integration

Simulation &

Test
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Processor-in-the-Loop (PIL) Testing
on ARM Cortex-M7 Processor -_—— 0 | G ..
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Tradeoffs and Benchmark
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EKF Tree FFN LSTM
Extended Kalman Filter Fine Regression Tree 1-hidden layer Stacked Long Short-Term
Feedforward Network Memory Network
Training Speed N/A O O @
Interpretability O @) @) O
Inference Speed * O O O O
Model Size * O O O O
Accuracy (RMSE) O O O O

* NXP S32K344 board

Results are specific to this example
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Reducing Al Model size for embedded deployment

V Current Temperature
0.751 0.3851 0.3031

LLLEL
0.7510 0.3852 0.3046

0.7510 0.3852 0.3061 E

0.7510 0.3852 0.3076 IERERN
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Model compression
techniques to reduce
model size and speed up
inference
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Workflow with interpretability: Validated & Verified Al

/

Access, Generate
& Preprocess

Until satisfied Accuracy & Explainability

Extraction &

Features
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Black Box

Interpretability
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Scale Model into
production

=
4
=

Humans

23



4\ MathWorks

Summary Voltage SOC
Current
Temperature

Al is an alternative to state-based methods for Virtual

Sensor Modeling in the case of Battery SOC Estimation

Compare Different Al Methods to evaluate and manage
tradeoffs @’ m
</ </

Integrate Al models into Simulink for system-level
simulation and code generation

End to end Workflow - From Data Acquisition to Hardware
Deployment
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