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P-values and “Statistical Significance”

P-values, “statistical significance”, “null hypothesis significance
testing” (NHST)

Much attention in the applied statistics literature in recent years,
most of it critical.
Economics profession just starting to pick up on this (e.g., JEP
Summer 2021 symposium on statistical significance, with
contributions from Imbens (2021), Kasy (2021), Miguel (2021).)
American Statistical Association 2016 “Statement on Statistical
Significance and P-Values”: “Scientific conclusions and business or
policy decisions should not be based only on whether a p-value passes
a specific threshold.” (Wasserstein and Lazar, 2016)
2019 Nature paper by Amrhein et al. (2019), cosigned by over 800
researchers (including me): researchers should “retire statistical
significance” in favor of more nuanced interpretation.
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A typical (economics) NHST example

A researcher estimates
yi = xiβ + εi (1)

usually with some “controls”, and then tests the null hypothesis

H0 : β = 0 (2)

based on the estimated β̂ and its standard error. If the p-value is less than
5%, the researcher declares victory: β is “statistically significant” and it’s
time to write it up and send it off to a journal.

There is a long list of reasons why this is Bad Practice.

First on my list: by itself, testing H0 : β = 0 tells us almost nothing.
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A typical (economics) NHST example (continued)

As economists, we almost always want to know the answers to “How big is
the effect?” and “How precisely is it estimated?” (Economics very
mainstream here.)

By itself, testing H0 : β = 0 helps answer neither of these questions.

Say we reject H0 : β = 0.
What if β̂ is extremely small but extremely precisely estimated?
What if β̂ is very large but the standard error is also huge?

Our conclusions should be very different!

(It is amazing that so many papers with this mistake still get circulated.)

All pretty obvious (to this audience, anyway).
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NHST and teaching econometrics

Most of the wider debate has been about the problems of misuse of
statistical significance, p-values, NHST etc. in the practice of research.

But the problem is rife in teaching, as a casual skim of u/g
econometrics textbooks (and statistics textbooks more generally) will
reveal.

(NB: Nostra culpa! Looking at my old teaching materials makes for
uncomfortable reading in places.)

The pervasiveness of the problem in research over many decades is
hard to explain without a causal role for how statistics and
econometrics is taught.
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Interval estimation and coverage

What should be done instead?

yi = xiβ + εi

My recommendation:

Interval estimation and coverage probability should be the key
teaching outcomes.

Report [β̂LL, β̂UL] as the key estimand – not β̂OLS .
Teaching interval estimation rather than point estimation
automatically emphasises uncertainty.

NB: By “interval estimation” I mean frequentist confidence intervals
(unless it’s a Bayesian course).
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An u/g textbook example: the gender wage gap

Empirical exercise results summarised:
“Based on this sample, we estimate the firm’s gender wage gap to be
[15%, 21%] based on a 95% confidence interval.”
“Based on this sample, we estimate the firm’s gender wage gap to be
[1%, 35%] based on a 95% confidence interval.”

It’s easy to see, and to teach, the difference between these two results: the
first estimate is obviously more precise, and the metric is easy to
understand.

Compare traditional NHST approach:
“At the 5% significance level, we can reject the null hypothesis that
there is no discrimination. By the way, the p-value is 0.00004%.”
“At the 5% significance level, we can reject the null hypothesis that
there is no discrimination. By the way, the p-value is 4%.”

What are students to make of this? Thoroughly opaque.
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Teaching coverage

To interpret these intervals, students need to understand what “coverage”
means. Teaching this concept is easier than it sounds (and much easier
than teaching p-values).

Definition of coverage: “The coverage probability [or just coverage] of an
estimation procedure for a parameter β is the probability that the
estimated interval will contain the true β.”

Definition of a 95% confidence interval: An interval estimation method
with 95% coverage. In repeated samples, 95% of the estimated intervals
will contain the true β.

Need to emphasise to students: (1) The interval (not the β) is random
– it’s based on a sample dataset. (2) 95% coverage applies to the method.

Teaching this is easier than it sounds, because there are good analogies
available.
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Teaching coverage

Time permitting, the following slides will be replaced by a live
demonstration.

Pin-the-Tail-on-the-Donkey:

Pin-the-Tail-on-the-Donkey is a well-known children’s party game.
A large poster of a donkey is put on a wall. The donkey is missing its
tail.
The child playing is given a tail with a pin or something sticky so that
the tail can be attached to the donkey in the appropriate place [sic].
The catch is that the child is blindfolded and then spun around so
that they are disoriented.
The child is then pointed towards to donkey poster and told to try to
put the tail as close as possible to where the tail belongs.
The other children at the party can yell clues and suggestions to the
blindfolded child: “Higher!” “To your right!” “Lower!” And so on.

8 / 19



Pin-the-Tail-on-the-Donkey

The picture here shows the aftermath of a play of the game. The target
point – where the tail belongs – is indicated by the black arrow. The
winning player’s tail is indicated by the green arrow.
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Interlude: Confidence intervals vs Prediction intervals?

yi = xiβ + εi

Confidence interval: an interval for the (fixed) parameter β.

Prediction interval: an interval for the (random) outcome yi .

Typically we teach confidence intervals first.

But for teaching interval estimation and coverage probability, there’s a
case for starting with prediction intervals, as we’ll see.
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Teaching coverage

Pin-the-Ring-on-the-Donkey differs from conventional Pin-the-Tail-on-
the-Donkey in two key respects:

In Pin-the-Ring-on-the-Donkey you’re blindfolded as usual, but
instead of a tail with a pin, you’re trying to place a ring on the poster
where the donkey’s tail goes. If the ring contains the point where the
tail goes, you get a point; if it doesn’t, you get nothing.
The exact placement of the donkey is determined after you put on
the blindfold. Each time you play, the donkey is takes up a new
(random) place.

The features of this game share a near-complete range of
characteristics with frequentist prediction intervals.

And because it’s based on a children’s game – indeed, one often familiar to
many students already (depending on the country...) – it’s easy to teach.
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Pin-the-Ring-on-the-Donkey and Frequentist PIs

The (random) placement of the donkey’s rear is our out-of-sample
random outcome yoos .
The ring is our prediction interval.
At the end of the play, we take off our blindfold, and we see where
the (random) donkey is (yoos).
We also see where our ring ended up.
The placement of the ring is random; each time we play the game,
the ring will end up in a different place.
But any one time we play the game, it will either contain, or not
contain, the realised out-of-sample point where the tail belongs.
The ring is no longer random after the end of play.
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Pin-the-Ring-on-the-Donkey and Frequentist PIs

Still more:
The size of the ring corresponds to the confidence level. Want to win
more often? Use a larger ring. (Set the level higher and the prediction
interval will be wider.)
The clues yelled out by our friends are datapoints. Very few clues (a
small dataset) and we are likely to do poorly; more clues and we will
do better.
The frequentist properties of interval construction are analogous to
playing the game repeatedly. We know that if we play the game over
and over, 95% of the time we will score a point, just as 95% of the
time our prediction interval will contain the actual out-of-sample
outcome yoos .
But in any one play of the game we might or might not score.
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Mystery Pin-the-Ring-on-the-Donkey and Frequentist CIs

What about confidence intervals for the parameter β? Tweak the
game.

Mystery Pin-the-Ring-on-the-Donkey differs from Pin-the-Ring-on-the-
Donkey in two respects:

The donkey is placed once, before the game is ever played, and never
moves. (Fixed location, not random.)
In Mystery Pin-the-Ring-on-the-Donkey, you never find out the result
of any particular game. The blindfold never comes off.

The features of this game share a near-complete range of
characteristics with frequentist confidence intervals.

No need to go through all the details – the list is similar to that for
prediction intervals.
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Mystery Pin-the-Ring-on-the-Donkey and Frequentist CIs

Key difference between the standard and “Mystery” versions: with
prediction intervals, we can check whether our prediction intervals
have the expected coverage probability by looking at multiple
out-of-sample observations.
In fact, we can use out-of-sample observations to construct our
prediction intervals.
With confidence intervals, the magic of mathematical statistics tells
us what the coverage will be under certain assumptions. But we
have to believe these assumptions! (“Have confidence in them” ...
sorry.) Important to emphasise this to students.
In “Mystery Pin-the-Ring-on-the-Donkey” we never find out if we
won, and in real-word applied statistics, we never find out if our
interval really did contain the true β.
... But sometimes we find out if it didn’t.
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Confidence Intervals and Realized Confidence Intervals

We extend “Mystery Pin-the-Ring-on-the-Donkey” by introducing a formal
set of rules: “Olympic Mystery Pin-the-Ring-on-the-Donkey”.

In the modern javelin competition, the javelin has to land in a well-defined
“sector” that extends outwards from the point where the javelin is
launched. If the thrown javelin lands outside this sector, it is an illegal
throw and does not count.

In “Olympic Mystery Pin-the-Ring-on-the-Donkey”, the ring, when placed,
has to contain part of the poster on which the donkey appears. If the ring
is placed outside the poster, that play is disqualified.

The player is told after the play whether or not the ring was placed on the
poster, i.e.,whether or not it was a legal play.

Equivalently, the donkey is removed from the poster and then the blindfold
comes off, so the player can see whether the ring was placed legally or not.
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Confidence Intervals and Realized Confidence Intervals

This is a simple but effective way to convey that the coverage property of
confidence intervals applies only to the procedure.

Prior to any play of “Olympic Mystery Pin-the-Ring-on-the-Donkey”,
a player may have a coverage probability of 95%, i.e., a 95% change
of scoring a point.
But after the donkey is removed from the poster and the player
removes their blindfold, they can see whether it was a legal play.
If it was not a legal play, then the ring covers an area where it is
literally impossible for the donkey’s tail to belong.
Yet the ex ante coverage probability of the procedure was (and
remains, for future plays) 95%.
Similarly, a realized confidence interval can contain values that are
literally impossible for β to take, and yet the procedure can have
nominal coverage equal to actual coverage.
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Conclusions

The problems with NHST and the misuse of p-values is still
widespread in applied statistics.
We should be optimistic: the very fact that there is widespread
recognition in the research and academic community that there is
indeed a problem is good news indeed.
But progress will be slow until we change how we teach our students.
We should teach our students interval estimation as the key learning
outcome, and – in the frequentist setting – coverage as the key
concept.
I have suggested some tools for how to do this in an accessible and
easy-to-understand way.
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Thank you!

What’s wrong with how we teach frequentist
estimation and inference?

And what should we do about it?

(A: Teach coverage and interval estimation)
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