

Optimising maintenance operations in photovoltaic solar plants using data analysis for predictive maintenance

Gøran Sildnes Gedde-Dahl Msc. Data Science

Overview

Background Theoretical background Analysis Conclusion & future work

Motivation

Importance of reliability

Consequence of unexpected failure

Trade off: avoiding unexpected failure vs. exploiting full potential lifetime

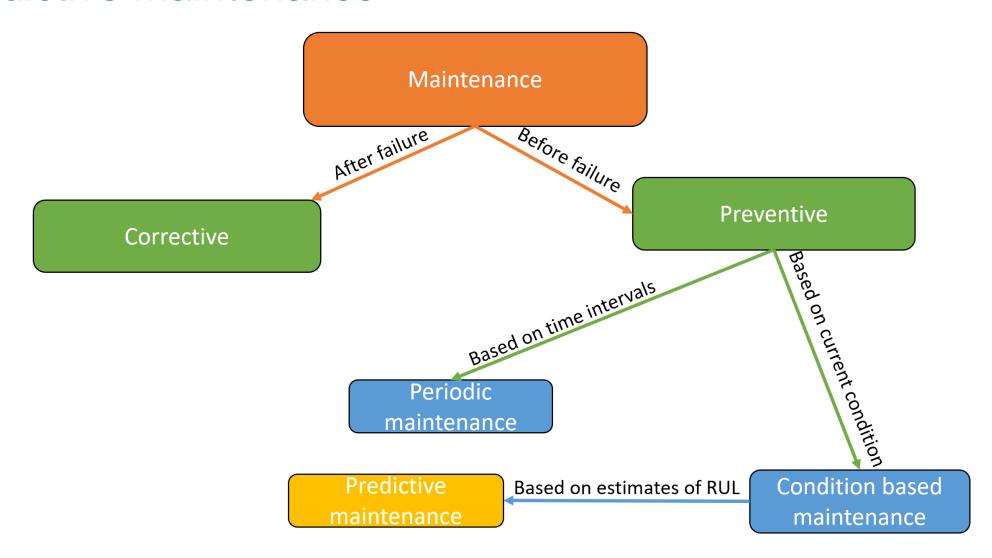
Goals

Conduct a proof of concept for predicting RUL (Remaining Useful Lifetime) using data science

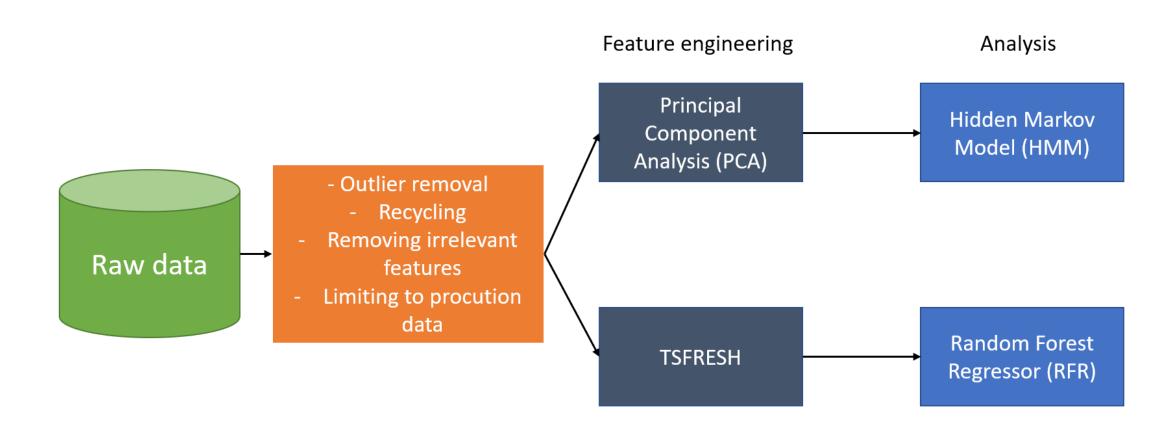
Make use of statistical and machine learning models

Evaluate and compare the competing approaches

Predictive maintenance



Proposed pipelines



Methodology

Principal Component Analysis (PCA)

Working method

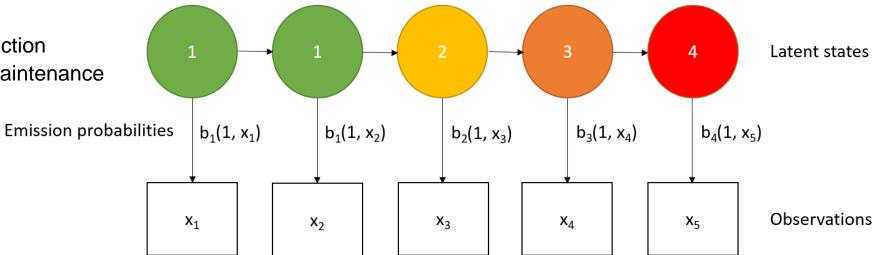
- Dimensionality reduction
- Creates new features from input features— principal components

User choice

Trade-off: number of features in output vs. explained variance

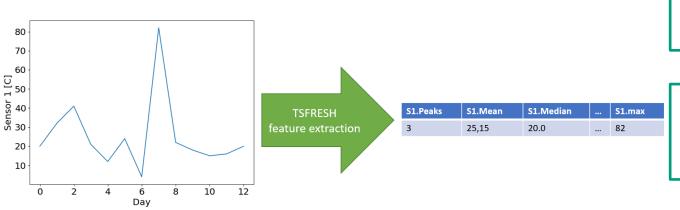
Hidden Markov Model

- A statistical method, unsupervised, probability based
 - Assumptions
- Parameters
 - Number of states
 - Start probability
 - Transition probability matrix
 - Covariance type
- Endpoint predicted state
 - Possibilities for RUL prediction
 - Use state for predictive maintenance



TSFRESH – Time Series Feature Extraction using Scalable Hypothesis test¹

1 data point per period per ID789 new attributes per attribute



Automated feature extraction method

Temporally invariant and variant information

Summarizing time series into one row

- 789 new columns per feature in the input data
- 77 functions with different parameter settings

Feature selection

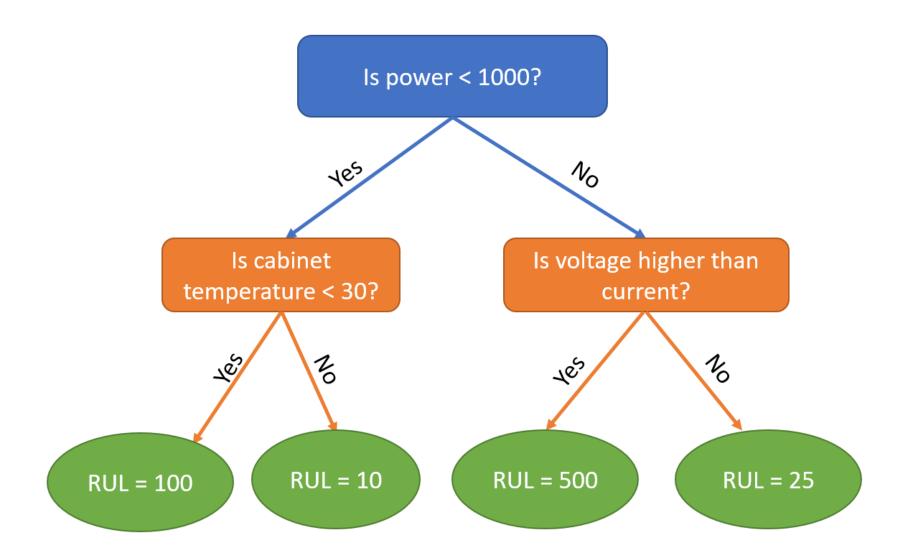
- Scalable Hypothesis test
- Benjmini-Yeuketeli eliminating false discovery

16 data points

1 Period

- 1 ID

Random Forest Regressor



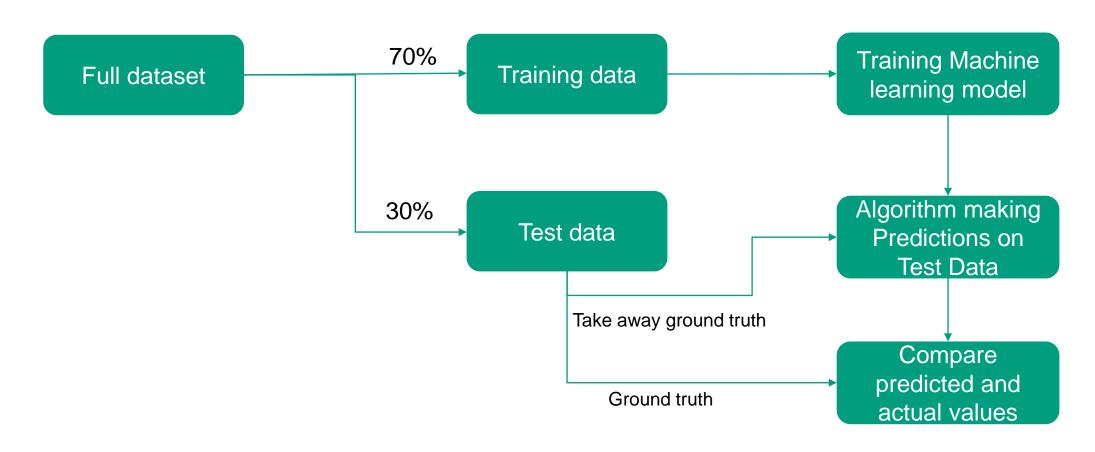
Experiments

Data background

- All Inverters and weather stations in all Egypt plants
 - Sampled every minute from June 2019 to 2022
 - Resampled to be every 30 minutes by mean value aggregation
- One certain failure type determined for prediction

Inverter	Timestamp	s1 DC power	s1 DC voltage	s1 DC current	s1 Phase 1 module temperature	 Status	Irradiation horizontal	Irradiation incline
01	06.05.2019 08:00	855,19	1193,29	718,75	83,5	 164	998,4	1037,0
01	06.05.2019 08:30	1031,68	1143,38	910,16	93,1	 164	1025,4	1037,4
01	06.05.2019 09:00	1226,49	1095,22	1123,15	105,3	 164	1035,9	1039,4

Experimental setup

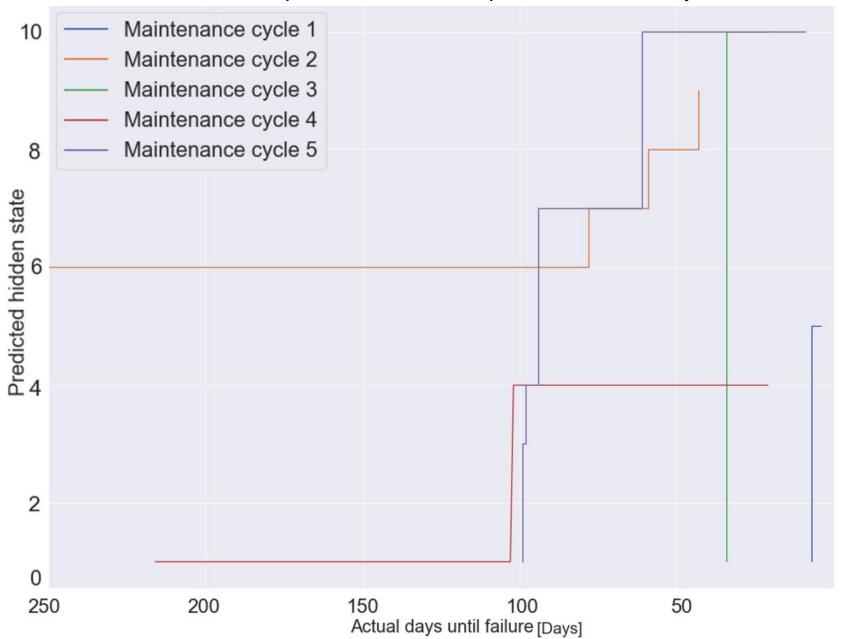


Approach 1

Degree of failure risk using a statistical Hidden Markov Model

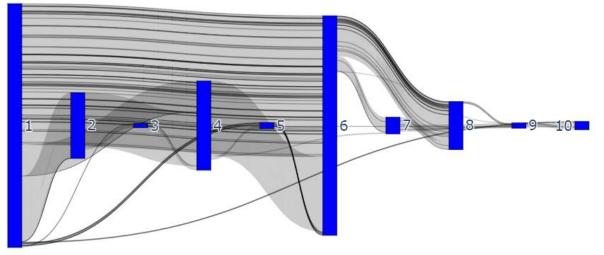
HMM state prediction for example maintenance cycles

Results

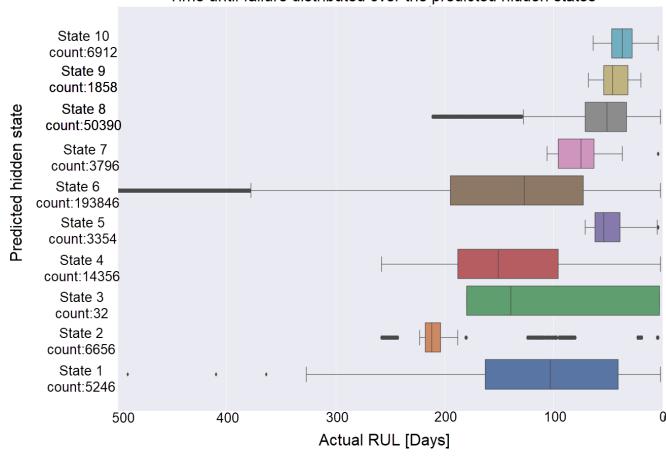


Results

Sankey plot for state migration



Time until failure distributed over the predicted hidden states

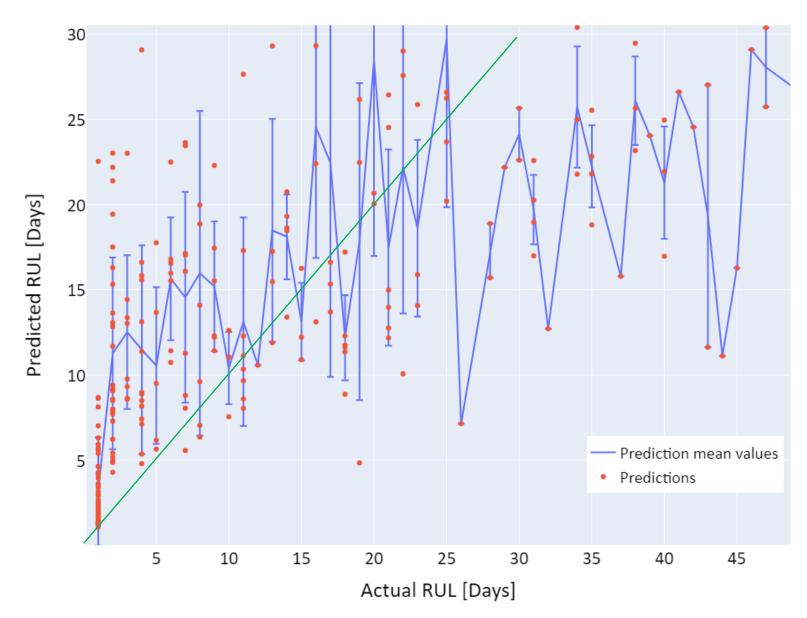


Approach 2

Machine learning algorithm estimating the time until failure at a given point in time



Results



Results

- Feature importances
- Randomness
- Relevance feedback from experts

Feature name				
Total_Capacitive_Reactive_Energy_in_the_inverter_symmetry_looking_r_0.3	0.37			
Section_2_Status_symmetry_looking_r_0.1	0.14			
Liquid_Cooling_flow_variance_larger_than_standard_deviation	0.13			
Section_2_DC_Power_Measurement_has_duplicate	0.08			
Section_1_Phase_3_power_module_temperature_has_duplicate	0.07			
Line_Voltage_Measurement_of_Phases_2_and_3_large_standard_deviation_r_0.1	0.07			
$Section_2_Phase_2_power_module_temperature_large_standard_deviation_r_0.25$	0.06			

- Common benchmark process
 - Prediction transformed to risk class

Prediction	RFR	$\mathbf{H}\mathbf{M}\mathbf{M}$
Risk 1	[0, 5]	[8, 10]
Risk 2	(5, 20]	[5,7]
Risk 3	$(20,\infty)$	[1,4]

Confusion matrices

Interpretation

Confusion matrix for PCA HMM method

47

Predicted class

16

23

3

51

30

28

Conclusion and Future Work

What do these results show?

There is a potential of predictive maintenance using data currently sampled

How can it be improved, what are the next steps?

Remove errors not leading to downtime
Testing on various geographical locations
Implementing an infrastructure for data analysis
and displaying results

Testing upsampling of data with large RUL

How do the two approaches compare?

RFR seems to be more stable in the confusion matrix

Differences in outputs and predictions

Thank you for your attention!

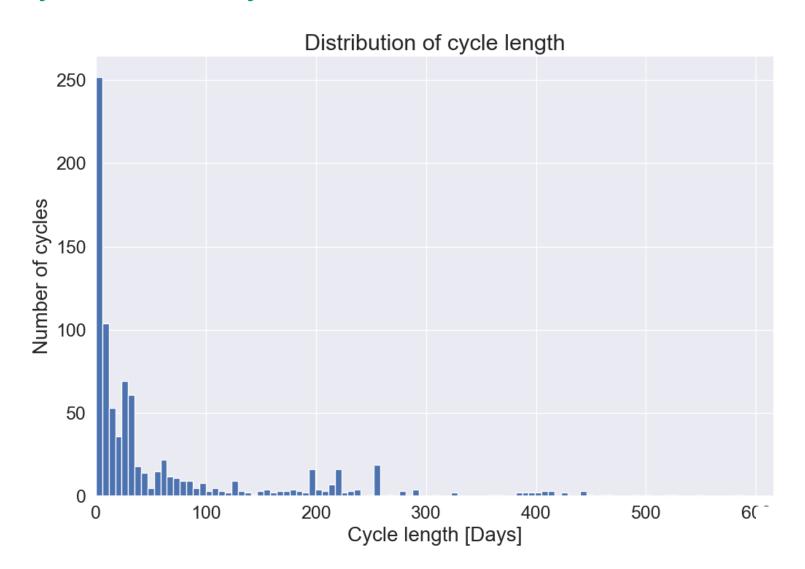
Questions?

• Feel free to contact me or further questions or comments

- E-mail: <u>goran.sildnes@icloud.com</u> - <u>goran.sildnes@prevas.no</u>

- LinkedIn: Gøran Sildnes Gedde-Dahl

Exploratory data analysis



Preprocessing

Filtering

- Non-production data
- Data from periods of failure
- Non-physical values
- Removing irrelevant columns (i.e. Error columns)

Outlier removal

 Extreme values indicating sensor error

Re-sampling maintenance cycles

 Random ending point before failure, maximum 50 days

Experimental setup: Re-sampling of maintenance cycles

