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Mortality data collected by Istat
Metal Additive Manufacturing Productions

➢ Geometries cannot be easy 

parametrized

➢ Statistical Process Control is not 

straightforward

Motivating Example: Control of Complex Parts

2

➢ a) lightweight bracket for 

space applications

➢ b) topologically optimized 

space antenna support

➢ c) rocket engine demonstrator

Scimone et al. (2021)
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Mortality data collected by Istat
Simple Control ChartsClear Quality Features

From Simple to Complex Shapes
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➢ For simple parts as screw and bolts, quality features are straightforward to identify, 
and uni- or multi-variate control charts can be built!

Scimone et al. (2021)
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Mortality data collected by Istat
What Quality Features?

From Simple to Complex Shapes
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➢ The egg shells were manufactured via AM at Dipartimento di Meccanica, Politecnico di 
Milano

Scimone et al. (2021)
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Mortality data collected by Istat
Mesh and Point Cloud Data

From Complex Objects to Complex Data
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➢ Mesh and point cloud data are obtained by X-ray Computed Tomography on the manufactured shapes
➢ N = 16 objects were manufactured
➢ Our data consists of a prototype mesh P and real objects meshes 𝑺𝒋, 𝒋 = 𝟏,…𝑵

Scimone et al. (2021)
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Mortality data collected by Istat
Mesh and Point Cloud Data

Modeling Geometric Deviations: Prototype vs Real Objects
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➢ How should we capture all information about geometric deviations?

Scimone et al. (2021)



riccardo.scimone@polimi.it

Mortality data collected by Istat

Modeling Geometric Deviations: Hausdorff Distance
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Natural metric between sets

With P we denote the prototype, with 𝑆𝑗 we denote the j-th mesh. 𝑃, 𝑆𝑗 ⊂ ℝ3

➢ 𝑑𝑆𝑗 𝑝 ≔ min
𝑠∈𝑆𝑗

𝑑 𝑝, 𝑠 ∀ 𝑝 ∈ 𝑃 Deviation map between 𝑃 and 𝑆𝑗

➢ 𝑑𝑃
𝑗
𝑠 ≔ min

𝑝∈𝑃
𝑑 𝑠, 𝑝 ∀ 𝑠 ∈ 𝑆 Deviation map between 𝑆𝑗 and 𝑃

➢ 𝑑𝐻 𝑃, 𝑆𝑗 : = max {𝑚𝑎𝑥𝑝∈𝑃 𝑑𝑆𝑗(𝑝),𝑚𝑎𝑥𝑠∈𝑆 𝑑𝑃
𝑗
𝑠 } Hausdorff Distance

Metric between subsets of a metric space, naturally induced by the metric space itself

Scimone et al. (2021)
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Mortality data collected by Istat

Hausdorff Distance and defect characterization
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Defect characterization

Since 𝑑𝐻 𝑃, 𝑆𝑗 = 0 ⟺ 𝑃 = 𝑆𝑗, the couple of maps (𝑑𝑃
𝑗
, 𝑑𝑆𝑗) fully characterizes the geometrical 

differences between the object and the prototype.

➢ The two maps generally carry different and complementary information

➢ In previous works, where simple objects and defects were considered, only one deviation map is 

analysed (Wells et al., 2013, and reference therein), but we need both for a complete 

characterization!

➢ The deviation maps are spatial functions with a different 3D domain. Moreover, the 𝑑𝑃
𝑗

have 

different domains and cannot be directly compared

Scimone et al. (2021)
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Mortality data collected by Istat
Deviation Maps, missing srut

Example: Complementariety of the Maps
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➢ 𝒅𝑷
𝒋
: 𝑺𝒋 → ℝ3, 𝒅𝑷

𝒋
𝒔 ∶= 𝒎𝒊𝒏𝒑∈𝑷 𝒅 𝒔, 𝒑 cannot see the defect in this case (no points associated to high values 

of distance)
➢ 𝒅𝑺𝒋: 𝑺𝒋 → ℝ3, 𝒅𝑺𝒋 𝒑 ∶= 𝒎𝒊𝒏𝒔∈𝑺𝒋 𝒅 𝒑, 𝒔 can!

Scimone et al. (2021)
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Mortality data collected by Istat
Deviation Maps, missing srut

Example: Complementariety of the Maps
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➢ Here the situation is reverted!

Scimone et al. (2021)
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From Distance Maps to Densities
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Summarizing maps for proper comparison

➢ 𝑑𝑆𝑗 → 𝑓𝑆𝑗 , density of distances of points of 𝑃 from 𝑆𝑗

➢ 𝑑𝑃
𝑗
→ 𝑓𝑃

𝑗
, density of distances of points of 𝑆𝑗 from 𝑃

➢ Two N-dimensional datasets, 𝑓𝑆: = {𝑓𝑆𝑗}𝑗=1,…,𝑁 and 𝑓𝑃 ≔ {𝑓𝑃
𝑗
}𝑗=1,…,𝑁 with a precise geometric 

interpretation

Scimone et al. (2021)
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Mortality data collected by Istat
From N objects to 2N densities

From Distance Maps to Densities
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➢ The initial dataset of 16 trabecular egg shells has been represented by two datasets of probability densities. 
Densities are estimated via Bernstein polynomials

Scimone et al. (2021)
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Mortality data collected by Istat

Why Densities?
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Natural Choice

➢ Natural extension of what is done in previous works (study of moments, QQ-plots)

➢ The mathematical theory is solid enough to extend SPC tools as control charts

Quick recap on 𝑩𝟐 geometry

𝐵2 Ω ≔ {𝑓 > 0 𝑜𝑛Ω, 𝑙𝑜𝑔 𝑓 ∈ 𝐿2 Ω , 𝑓1: = 𝑓2 𝑖𝑓𝑓 𝑓1 = α𝑓2 }

It’s an Hilbert space with appropriate operations between densities. Only ratios between parts matters, 

in a compositional fashion

➢ 𝑓1 + 𝑓2 ≔
𝑓1𝑓2

Ω 𝑓1𝑓2 ➢ 𝛽 ∙ 𝑓1: =
𝑓1
𝛽

Ω 𝑓1
𝛽

➢ 𝑓1, 𝑓2 =
1

2 Ω
ΩΩ 𝑙𝑜𝑔

𝑓 𝑡

𝑓 𝑠
𝑙𝑜𝑔

𝑔 𝑡

𝑔 𝑠
 𝑑𝑡𝑑𝑠

Scimone et al. (2021)
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Mortality data collected by Istat

Control framework: Profile Monitoring of Density Functions
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Summarizing a daset of densities

For control, we need to build appropriate statistics:

➢ PCA is consistently extended to Hilbert spaces and thus to 𝐵2 (SFPCA, Hron et al., 2016)

➢ Standard PCA-based control can then be applied

Computing Scores

Let (𝐻, +, ⋅,⋅ ) be Hilbert, {𝑋𝑖}𝑖=1,…,𝑁 a dataset with zero mean and sample covariance Σ, that is 

Σ𝑢 = 1/𝑁σ𝑖 X𝑖 , 𝑢 𝑋𝑖∀𝑢. Let 𝜆𝑗 , 𝜁𝑗 𝑗=1,…𝑁
be the spectral decomposition of Σ, and 𝑧𝑖𝑗 = ⟨𝑋𝑖, 𝜁𝑗⟩

the scores. Fix 𝐾 ∈ {1,… ,𝑁 − 1} suitably. 

Scimone et al. (2021)
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Control framework: Profile Monitoring of Density Functions
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PCA-based statistics for control

➢ 𝑇𝑖
2 = σ𝑘=1

𝐾 𝑧𝑖𝑗
2 /𝜆𝑗 measures the distance between the mean and the reconstruction of 𝑋𝑖 on the 

K-th principal subspace 𝑠𝑝𝑎𝑛(𝜁1, … 𝜁𝐾), taking into account the data variability

➢ 𝑄 = σ𝑗=𝐾+1
𝑁 𝑧𝑖𝑗

2 measures the Euclidean distance between the mean and the part of 𝑋𝑖 outside the 

first K-th principal subdpace

➢ 𝑇2 and 𝑄 are uncorrelated and can be used for control, as classical PCA-based control charts

Scimone et al. (2021)
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Control charts construction on real data
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Scimone et al. (2021)
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Simulations for Power Estimation
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Simulated defectiveness scenarios

➢ Other scenarios were explored, with very satisfactory results

Scimone et al. (2021)
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Conclusion: Final Remarks
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A general strategy

The choice of shape descriptors, based on Hausdorff distance, in conjunction with the theory of 
Hilbert spaces, allow us to: 

➢ Build a general framework for SPC on dataset of scanned objects, regardless of their 

complexity or topological richness

➢ Summarize the ``defective'' or ``conformal'' status of an object on the basis of simple 

statistics

➢ Design extensive simulation studies

➢ Detect both widespread and very local defectiveness sources

Scimone et al. (2021)
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