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Motivating Example: Control of Complex Parts

Scimone et al. (2021)

Metal Additive Manufacturing Productions \

a) lightweight bracket for

space applications

> D) topologically optimized
space antenna support

» C) rocket engine demonstrator

~
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» Geometries cannot be easy
parametrized
» Statistical Process Control is not
straightforward
/
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From Simple to Complex Shapes

Scimone et al. (2021)

Clear Quality Features
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> For simple parts as screw and bolts, quality features are straightforward to identify,

and uni- or multi-variate control charts can be built!
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From Simple to Complex Shapes

Scimone et al. (2021)

/ What Quality Features? \
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(d) Defective-MS (e) Defective-EM

[> The egg shells were manufactured via AM at Dipartimento di Meccanica, Politecnico di J
Milano
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From Complex Objects to Complex Data

Scimone et al. (2021)

Mesh and Point Cloud Data

Node of the lattice structure

Polygonal element of the mesh

Face

Vertex ‘Edge

Strut of the lattice structure

» Mesh and point cloud data are obtained by X-ray Computed Tomography on the manufactured shapes
> N =16 objects were manufactured
» Our data consists of a prototype mesh P and real objects meshes S p J=1..N
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Modeling Geometric Deviations: Prototype vs Real Objects

Scimone et al. (2021)

/ Mesh and Point Cloud Data \

(a) Nominal Model mesh (b) Geometrical (c) Printed mesh
mismatch after ICP

\\ algorithm /

» How should we capture all information about geometric deviations?
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Modeling Geometric Deviations: Hausdorff Distance

Scimone et al. (2021)

/ Natural metric between sets \

With P we denote the prototype, with §; we denote the j-th mesh. P, S; C R3

> de(p) = rrélsn d(p,s)VpeEP Deviation map between P and §;
S

> d{; (s) :== me.gd (s,p)VsES Deviation map between S; and P
P

> dy (P, Sj): = max {maxpep ds,(p), Maxses d,’;(s)} Hausdorff Distance

%tric between subsets of a metric space, naturally induced by the metric space itself /
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Hausdorff Distance and defect characterization

Scimone et al. (2021)

/ Defect characterization \

Since dH(P, Sj) = 0 & P = §;, the couple of maps (dj, de) fully characterizes the geometrical
differences between the object and the prototype.

» The two maps generally carry different and complementary information
» In previous works, where simple objects and defects were considered, only one deviation map is

analysed (Wells et al., 2013, and reference therein), but we need both for a complete

characterization!

» The deviation maps are spatial functions with a different 3D domain. Moreover, the d{; have
K}Iifferent domains and cannot be directly compared /
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Example: Complementariety of the Maps

Scimone et al. (2021)

/ Deviation Maps, missing srut \
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> d{,: S;j — R3, d{, (s) := min,cp d(s, p) cannot see the defect in this case (no points associated to high values
of distance)
> ds;: Sj - R3, ds;(p) := mingg, d(p, s) can!
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Scimone et al. (2021)
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From Distance Maps to Densities

Scimone et al. (2021)

/ Summarizing maps for proper comparison \

> de - ij, density of distances of points of P from §;

> d{; - fpj, density of distances of points of S; from P

» Two N-dimensional datasets, fs: = {ij}j=1,___,N and fp = {fpj}j=1,___,N with a precise geometric

\interpretation /
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From Distance Maps to Densities

Scimone et al. (2021)

From N objects to 2N densities \
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» The initial dataset of 16 trabecular egg shells has been represented by two datasets of probability densities.
Densities are estimated via Bernstein polynomials

(a) OOC-MS
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Why Densities?

Scimone et al. (2021)

4 Natural Choice A
» Natural extension of what is done in previous works (study of moments, QQ-plots)
» The mathematical theory is solid enough to extend SPC tools as control charts
)

N
a Quick recap on B? geometry

B*(Q) = {f > 00nQ, log(f) € L*(Q), fi:= fLiff i = afz}

It’s an Hilbert space with appropriate operations between densities. Only ratios between parts matters,

\ina compositional fashion W

. Nif2 B
£> futfa = Jo 1f2 } £> B-fii= f_f } £> {f.f2) zlnlf Jo log;Et; '99° 55 g(t) dtds }
Q71
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Control framework: Profile Monitoring of Density Functions

cimone et al. (2021)

/ Summarizing a daset of densities \

For control, we need to build appropriate statistics:
> PCA is consistently extended to Hilbert spaces and thus to B% (SFPCA, Hron et al., 2016)

» Standard PCA-based control can then be applied

(& /

)

/ Computing Scores

Let (H, +,(:,)) be Hilbert, {X;};—1 .y a dataset with zero mean and sample covariance X, that is
Zu = 1/N ) (X;, u)X;Vu. Let (Aj, qj)j=1,...N be the spectral decomposition of X, and z;; = (X, {;)

the scores. Fix K € {1, ..., N — 1} suitably.

-

v
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Control framework: Profile Monitoring of Density Functions

Scimone et al. (2021)

/ PCA-based statistics for control \

> TF =YK, zizj//lj measures the distance between the mean and the reconstruction of X; on the
K-th principal subspace span({y, ... (), taking into account the data variability

> Q= Z?L,{Hzizj measures the Euclidean distance between the mean and the part of X; outside the

first K-th principal subdpace
\\> T4 and Q are uncorrelated and can be used for control, as classical PCA-based control charts /
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Control charts construction on real data

Scimone et al. (2021)
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Simulations for Power Estimation

Scimone et al. (2021)

/ Simulated defectiveness scenarios \
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» Other scenarios were explored, with very satisfactory results
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Conclusion: Final Remarks

Scimone et al. (2021)

/ A general strategy \

The choice of shape descriptors, based on Hausdorff distance, in conjunction with the theory of
Hilbert spaces, allow us to:

» Build a general framework for SPC on dataset of scanned objects, regardless of their

complexity or topological richness

» Summarize the “defective" or “conformal' status of an object on the basis of simple

statistics

» Design extensive simulation studies

» Detect both widespread and very local defectiveness sources /
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