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In This Talk

roup quivariant on - xpansive perator

Mathematical entities that can be used to build 
efficient and interpretable networks for data analysis.
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Definition
GENEO (Group Equivariant Non-Expansive Operators)

Given two functional spaces 𝛷 = {𝜑: 𝑋 → ℝ} and 𝛹 = {𝜓: 𝑌 → ℝ}, two 
groups 𝐺 and 𝐻 of transformations of the functions domains (𝑋 and 𝑌) and 
a fixed homomorphism 𝑇: 𝐺 → 𝐻, we define a Group Equivariant Non-
Expansive Operator as a function 𝐹 from 𝛷 to 𝛹 with the following two 
properties:

oEquivariance: For every 𝜑 ∈ 𝛷 and 𝑔 ∈ 𝐺 it holds that 
𝐹(𝜑 ∘ 𝑔) = 𝐹(𝜑) ∘ 𝑇(𝑔)

oNon-Expansivity: For every 𝜑!, 𝜑" ∈ 𝛷 it holds that
𝑑(𝐹(𝜑!), 𝐹(𝜑")) ≤ 𝑑(𝜑!, 𝜑")
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Equivariance
Equivariance means that a GENEO is able to commute with a specified 
group of geometrical transformations.
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Non-Expansivity
Non-Expansivity means that GENEOs do not increase distances between 
data functions. In some sense, they give (possibly) simpler representations 
of the data.

GENEO
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Combining GENEOs
In addition we are allowed to 
combine GENEOs with some 
operations:

o Composition

o Minimum and Maximum

o Translation
o Convex combination

o ...

𝐹!

𝐹"

𝐹#

𝐹$

𝐹%

7/25Giovanni Bocchi - University of Milan6/27/2022



Networking
By combining different families of GENEOs, with possibly different 
equivariance groups, we can obtain networks of GENEOs and use them to 
analyze data.

𝐹!!, 𝐺!!

𝐹!", 𝐺!"

𝐹"!, 𝐺"!

𝐹"#, 𝐺"#

𝐹$!, 𝐺$!

...

Input(s) Output(s)

8/25Giovanni Bocchi - University of Milan6/27/2022



Problem: 
Protein Pocket Detection
The first prototype of Network of GENEOs was developed to solve the 
problem of identifying “druggable” pockets on the surface of proteins.
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Data
The data used to develop the model 
are a subset of the PDBbind dataset  
made of protein/ligand complexes. 

These initial data are used to 
compute 8 functions 

𝜑#: 𝐵 ⊆ ℝ$ → ℝ

that we refer to as “potentials”. They 
describe the geometrical, physical 
and chemical properties of a protein 
and are the actual inputs for 
GENEOs.
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GENEOs
The GENEOs 𝐹# developed to 
analyze those potentials are all 
convolutional operators with 
rotationally invariant kernels.

This guarantees equivariance w.r.t the 
group of rigid motions of the space.
Each kernel, that was designed to 
look for a specific property of the 
corresponding potential, depends on 
a shape parameter 𝜎#.
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Aggregation

The 8 parametric families of GENEOs are then networked via a convex 
combination that depends on 8 non negative parameters 𝛼# that add up to 1.

In the end we get an “aggregated” GENEO that blends the information of the 
various potentials returning a single output function

𝜓: 𝐵 ⊆ ℝ$ → [0,1]

This function can be interpreted as the one that assigns to each point of the 
space surrounding the protein the probability of belonging to some pocket.

12/25Giovanni Bocchi - University of Milan6/27/2022



Prediction 𝜓
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Thresholding

The function 𝜓 encodes all 
the information useful for the 
final prediction. 

Indeed, we can obtain a 
finite number of pockets by 
picking a threshold 𝜃 ∈ [0,1]
and considering the 
connected components of 
the superlevel set  {𝜓 ≥ 𝜃}.
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The Model The GENEO-based model that was introduced 
is called GENEOnet and has the following 
architecture.
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How to Train the Model?

GENEOnet has (just) 17 free 
parameters that were trained 
in a neural network fashion 
using a form of 
Backpropagation.

But in order to do that we 
need to specify a ground 
truth and a loss function.
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Loss Function
As ground truth we considered the spatial 
region occupied by the ligand. 

The prediction after thresholding D𝜓 is a 
binary function with values in {0,1} that can 
be compared with the binary ground truth 𝜏
through the following accuracy function:

𝑙( D𝜓, 𝜏) =
D𝜓 ∧ 𝜏 + 𝑘 (𝟏 − D𝜓) ∧ (𝟏 − 𝜏)

𝜏 + 𝑘 𝟏 − 𝜏

𝑘 = 1

𝑘 = 0

𝑘 ∈]0,1[

Prediction biased 
towards identifying 
non-cavities. 

Prediction biased 
towards including 
the ligand.

Compromise 
between accuracy 
and exploration.

k ≈ 0.01 − 0.05
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Training

The model has been trained to 
maximize the accuracy function with 
Adam optimizer on a training set of 
200 proteins randomly sampled. 

We used such a small training set 
since:
o GENEOnet has a few free 
parameters.

o Considering larger training sets 
does not impact significantly the 
values of the parameters.
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Scoring

The final result of GENEOnet 
is a set of pockets without 
some sort of ordering.

Thus we derived a scoring 
function that assigns a pocket 
a score based on a weighted 
mean of the values of 𝜓
inside the corresponding 
connected component.

0.3
0.4

0.7

Scoring
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Comparison and 
Model Selection
The results of GENEOnet are not easily benchmarkable, since usually 
different pocket finders have different internal representations of data and 
pockets. Moreover, when they are ML models, they can be hard to compare 
due to differences in the loss functions. 

However many models outputs a list of pockets with scores. Thus we chose 
to compare the models testing how well they can find the right pocket in the 
top ranked.

𝐻% =
#matchings by the i − th top ranked

# proteins

𝑇% =
#matchings within the i − th top ranked

# proteins =F
&'!

%

𝐻&
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Model Selection
First, 𝐻! was used to perform model selection on the validation set (almost 
3000 proteins).

Model 1Training 
set 1

Model 2Training 
set 2

Model 
200

Training 
set 200

...

Validation set
M

axim
izing 𝐻

!

Model 
(best)

Training 
set (best)
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Comparison

The same metrics were 
used to compare 
GENEOnet with other 
state-of-the-art models 
for protein pocket 
detection.

P2Rank

DeepPocket CavVis

Fpocket

CAVIAR

SiteMap
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Results The bar chart shows the results of the model 
comparison on the test set (almost 9000 proteins).
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Thank you for your attention!
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