Methods for variable time-delay estimation in industrial data

ENBIS, Trondheim 26-29 June 2022

Marco Cattaldo, Alberto Ferrer, Ingrid Måge

Have you ever... Not so imaginary data story

Predicted

Presentation Overview

Variable time-delay estimation Synchronisation of process variables

Product quality = function(raw material, processing)

- Variable time delay is structural to most *continuous* processes.
- Data acquisition is *simultaneous*, process flow is *not*

Variable time-delay estimation Approaching the time-delay estimation problem (1/2)

• Not tackling the issue will give *wrong* results

• How to solve the Variable time delay estimation problem?

Variable time-delay estimation Approaching the time-delay estimation problem (2/2)

- *Physical* variable time-delay estimation
 - Serious feasibility issues
- Consulting the process operators
 - Not precise enough
- A large amount of data-driven methods are available

28 Jun 2022

Data-driven variable time-delay estimation how to: Step 1: Incorporate all lags (1/3)

Steps for delay estimation

- Include all Lags in the dataset ۲
 - Lag augmented predictor matrix
 - Lag augmented target matrix —
 - Lag selection —

28 Jun 2022

Data-driven variable time-delay estimation how to: Step 1: Incorporate all lags (2/3)

Steps for delay estimation

- Include all Lags in the dataset ٠
 - Lag augmented predictor matrix
 - Lag augmented target matrix
 - Lag selection —

28 Jun 2022

Data-driven variable time-delay estimation how to: Step 1: Incorporate all lags (3/3)

Steps for delay estimation

- Include all Lags in the dataset ۲
 - Lag augmented predictor matrix
 - Lag augmented target matrix
 - Lag selection —

9

Data-driven variable time-delay estimation how to Step 2: Identify the correct lags

Steps for delay estimation

- Two possible approaches
 - Bivariate
 - Multivariate

- In all cases we can use
 - a MODEL
 - an INDEX

Data-driven variable time-delay estimation how to: A word on Indices and Models

• Beware of nonlinearities!

• Identify the right type of model / index

Compare different models / Indices

Comparison between measures of dependence

Data-driven variable time-delay estimation how to: Step 3: Analyse the results

Steps for delay estimation

- Postprocess the results:
 - Identify max lag(s)
 - Rebuild the X matrix incorporating only the correct lags
- Proceed with further analysis

Industrial case: In-Line NIR system @ Biomega

Industrial case: *Temperature and NIR (1/2)*

• NIR measures light absorption on a sample

• With temperature the absorption changes

• NIR is an expensive thermometer

Industrial case: *Temperature and NIR (2/2)*

• Great range of temperatures

Calibration could be made more robust

0.35

0.3

 $\mathbf{0}(t) = f \left\{ \mathbf{-} \right\}$ (t

- For which *k* the relationship is the *strongest*?
- Compare four techniques

Industrial case: *Choice of techniques*

	INDEX	MODEL
Augmented matrix	Correlation Coefficient	PLS – Selectivity Ratio
Lag Selection	Mutual Information	PLS – Goodness of Fit

- Different kind of approaches tested
 - Bivariate
 - Multivariate
- Different parameters tested
 - Mutual Information, *number of neighbors*
 - PLS, number of components

Industrial case: *Techniques Explanation*

- Mutual Information I(X, Y)
 - Decrease in the uncertainty (entropy) of Y by knowing X
 - Distance between P(X, Y) and P(X)P(Y)

• Zero iif X and Y are independent

- Concept formulated for discrete signals
 - Must be estimated for continuous signals

Industrial case: Interpreting the results

	t_0	<i>t</i> ₁₀	<i>t</i> ₂₀	<i>t</i> ₃₀	<i>t</i> ₄₀	t ₅₀	t ₆₀	t ₇₀	t ₈₀	t ₉₀	<i>t</i> ₁₀₀	<i>t</i> ₁₁₀	<i>t</i> ₁₂₀	<i>t</i> ₁₃₀	<i>t</i> ₁₄₀	<i>t</i> ₁₅₀	<i>t</i> ₁₆₀	<i>t</i> ₁₇₀	<i>t</i> ₁₈₀	<i>t</i> ₁₉₀	<i>t</i> ₂₀₀
Correlation Coefficient																					+
PLS – Selectivity Ratio									+						++					++	
$PLS - R^2$ of Cross Validation															+	+	++	+			
Mutual Information																+++	++				
Total									+						+++	++++	++++	+		++	+

- Some techniques are less robust
- The expected delay between NIR and Temperature is 140/160 seconds

Variable Time Delay estimation: take-home points

• Many available methods

- No Free Lunch
 - there are no catch-all methods

Thanks for your attention!

Time Delay Estimation Feature Selection and Time Delay Estimation

- Feature selection and time delay estimation have a lot of common ground
 - Time delay estimation could be seen as a particular case Feature Selection on the lagged matrix
- Characteristics of time delay estimation
 - 1. Known number of variables to search for
 - 2. Same process generates all the lagged versions of a variable
 - There should be a clear maximum point in the dependence measurements vector
 - 3. The number of variables to target dramatically increases compared to the original Feature selection problem
 - I possible states for m variables → $C^{R}(m, l) = \frac{(m+l-1)!}{m!(l-1)!}$
 - $\circ~$ Search strategies need to be further optimized for the methods to be applied

Industrial case: In-Line NIR system @ Biomega

Innovative company

• Extracts protein from fish rest raw material

biomega[®] UNIVERSITAT POLITÈCNICA DE VALÈNCIA

• Sells to Human and animal feed market

Extra Slides End