Processing new types of quality data: analysis of partitioning metric space data

Yariv N. Marmor
Emil Bashkansky

BRAUDE - College of Engineering, Karmiel, ISRAEL

Valencia - ENBIS 2023 September, 13

Yariv N. Marmor, Emil Bashkansky " Processing new types of quality data"

Quality and Reliability Engineering International, 36 (8), 2621-2638, 2020

	2.1 Nominal data	2.2 Ordinal data	2.3 Ranked/ prioritized data	2.4 Strings	2.5 Tree- structured data	2.6 Product or process distribution
3.1 Similarity/dissimilarity	4.1	4.1	4.1	4.1	4.1	4.1
and closeness/distance	4.1 .1	4.1 .2	4.1 .3	4.1 .4	4.1 .5	4.1 .6
3.2 Metrological aspects	4.2	4.2	4.2	4.2	4.2	4.2
3.3 Data aggregation or	4.2 .1	4.2 .2	4.2 .3	4.2 .4	4.2 .5	4.2 .6
fusion and location	4.3	4.3	4.3	4.3	4.3	4.3
measure	4.3 .1	4.3 .2	4.3 .3	4.3 .4	4.3 .5	4.3 .6
3.4 Dispersion measure	4.4	4.4	4.4	4.4	4.4	4.4
and variation analysis	4.4 .1	4.4 .2	4.4 .3	4.4 .4	4.4 .5	4.4 .6
3.5 Data partitioning			$*$			$*$
3.6 Data clustering...						

Data/objects partition

Examples of distance metrics

Data/objects partition: degrees of connection (dc) split

Data/objects partition: sum of distances (SD) split

Segment 1
Segment 2
Sum of Distances: Intra $\left\{(S D)_{\text {intra }}=d(A, B)+d(C, D)\right\}$
Sum of Distances: Inter $\left\{(S D)_{\text {inter }}=d(A, C)+d(A, D)+d(B, C)+d(B, D)\right\}$
Sum of Distances: Total

$$
\left\{(\mathrm{SD})_{\text {total }}=\mathrm{d}(\mathrm{~A}, \mathrm{~B})+\mathrm{d}(\mathrm{C}, \mathrm{D})+\mathrm{d}(\mathrm{~A}, \mathrm{C})+\mathrm{d}(\mathrm{~A}, \mathrm{D})+\mathrm{d}(\mathrm{~B}, \mathrm{C})+\mathrm{d}(\mathrm{~B}, \mathrm{D})\right\}
$$

Segregation power index - SP

$S P=\frac{M D_{\text {inter }}}{M D_{\text {intra }}}=\frac{S D_{\text {inter }} / d c_{\mathrm{inter}}}{S D_{\mathrm{intra}} / d c_{\mathrm{intra}}}$

Example 1: Distribution of quality costs proportions by the four main categories (Rosenfeld et.al, 2019)

	Company 1	Company 2	Company3	Company 4	Company5	Company 6	Company 7	Company 8
Prevention Costs	0.19	0.05	0.07	0.19	0.11	0.31	0.19	0.23
Appraisal Costs	0.22	0.15	0.13	0.35	0.47	0.12	0.32	0.23
Internal Failure Costs	0.14	0.28	0.18	0.27	0.19	0.14	0.27	0.27
External Failure Costs	0.45	0.52	0.62	0.19	0.23	0.43	0.22	0.27

Hellinger distances and SP calculation

$$
H(P, Q)=\frac{1}{\sqrt{2}} \sqrt{\sum_{i=1}^{4}\left(\sqrt{p_{i}}-\sqrt{q_{i}}\right)^{2}}
$$

	Company 1	Company 2	Company 3	Company 4	Company 5	Company 6	Company 7	Company 8
Company 1	0.000	0.198	0.169	0.214	0.222	0.122	0.189	0.152
Company 2	0.198	0.000	0.094	0.290	0.290	0.265	0.265	0.240
Company 3	0.169	0.094	0.000	0.328	0.320	0.230	0.302	0.266
Company 4	0.214	0.290	0.328	0.000	0.120	0.269	0.030	0.104
Company 5	0.222	0.290	0.320	0.120	0.000	0.317	0.127	0.191
Company 6	0.122	0.265	0.230	0.269	0.317	0.000	0.244	0.178
Company 7	0.189	0.265	0.302	0.030	0.127	0.244	0.000	0.077
Company 8	0.152	0.240	0.266	0.104	0.191	0.178	0.077	0.000
			$\mathbf{S D}_{\text {intra }}=\mathbf{1 . 7 2 7}$	$\mathbf{d c}_{\text {intra }}=\mathbf{1 2}$	$\mathbf{M D}_{\text {intra }}=\mathbf{S D}_{\text {intra }} / \mathbf{1 2}=\mathbf{0 . 1 4 4}$			

Examples of 2 preference chains consisting of 4 alternatives

$C_{1}: A_{3}>A_{4}>A_{1}>A_{2}$
$C_{2}: A_{2}>A_{1}>A_{4}>A_{3}$

Example 2: Preference/prioritization chains

$$
\begin{aligned}
& C_{1}: A_{3}>A_{4}>A_{1}>A_{2} \\
& C_{2}: A_{2}>A_{1}>A_{4}>A_{3}
\end{aligned}
$$

Distance metric based on cosine similarity

Five experts/judges have prioritized alternatives with judges no. 2 and no. 3 being women, while judges no.1, no. 4 and no. 5 were men (Vanacore et.al, 2019)

$$
\begin{gathered}
M D_{\text {intraa }}=\left[d_{2,3}+\left(d_{1,4}+d_{1,5}+d_{4,5}\right)\right] / 4=0.385 \\
M D_{\text {inter }}=\left[\left(d_{2,1}+d_{2,4}+d_{2,5}\right)+\left(d_{3,1}+d_{3,4}+d_{3,5}\right)\right] / 6=0.578 \\
\quad \mathbf{S P}=M D_{\text {inter }} / M D_{\text {intra }}=\mathbf{1 . 5 0 2}
\end{gathered}
$$

$S P$ distribution under given null/ homogeneity hypothesis \mathbf{H}_{0}

Does not depend on the location parameter of the origin data distribution

Does not depend on the scale parameter of the origin data distribution Almost independent on shape parameter, especially for $S P>1$
Depends only on the type of partition, i.e., vector $\left(n_{1}, n_{2}, \ldots, n_{k}, \ldots, n_{m}\right)$

How amount of data influence SP distribution under H_{0}

$(10,10, \ldots 10)$
$n=10$
(n, n)
$m=2$

Five experts/judges have prioritized alternatives with judges no. 2 and no. 3 being women, while judges no.1, no. 4 and no. 5 were men (Vanacore et.al, 2019)

$$
\begin{aligned}
& M D_{\text {intra }}=\left[d_{2,3}+\left(d_{1,4}+d_{1,5}+d_{4,5}\right)\right] / 4=0.385 \\
& M D_{\text {inter }}=\left[\left(d_{2,1}+d_{2,4}+d_{2,5}\right)+\left(d_{3,1}+d_{3,4}+d_{3,5}\right)\right] / 6=0.578 \\
& \qquad \mathbf{S P}=M D_{\text {inter }} / M D_{\text {intra }}=\mathbf{1 . 5 0 2}
\end{aligned}
$$

The null hypothesis:

"Gender equality and the absence of real preferences between alternatives"

$S P_{0.95}=1.476$ and $p-$ value for calculated $S P$
$=1.502$ equals 4.39%

Modus operandi - 10 steps

1. Decide on the population of objects under study (OUS).
2. Make assumption about the type of the expected distribution of these objects within a homogeneous population.
3. Choose distance metric suitable to this distribution
4. Decide on the criterion that, in your opinion, can influence (heterogeneity hypothesis) and which levels serve as the basis for dividing/separating objects into groups (partition).
5. Provide corresponding data partitioning/division
6. Calculate $S P$
7. Simulate $S P$ distribution under H_{0} in accordance with partition vector ($n_{1}, n_{2}, \ldots, n_{k}, \cdots, n_{m}$) and the chosen distance metric. Every cycle of simulation process includes:
a. Random generation of N data from a population of OUS (in accordance to step 1) characterized by the assumed distribution (in accordance to step 2).
b. Distance matrix calculation (according to step 3)
c. Partitioning these distances to inter and intra components in accordance to steps 4 and 5
d. SP calculation and back to a.
8. Determine the alpha risk - α of homogeneity hypothesis H_{0} rejection.
9. Find (1- α) percentile of simulated $S P$ distribution, or alternatively, p - value of calculated $S P$.
10. Make final conclusion about the expediency of the made partition and its discrimination/separation/segregation power by usual statistical methods according to previous step results.

Thank You for your attention!

E-mail: ebashkan@braude.ac.il

