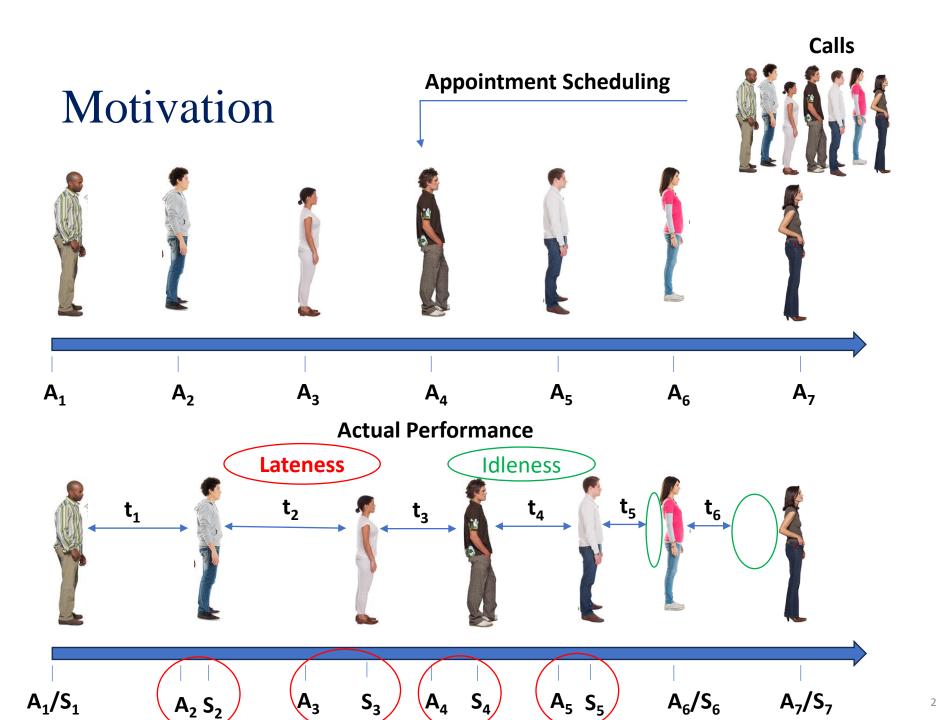
### The Benefits of Classification: An Appointment Case Study




Positron Emission Tomography (PET)

Yariv N. Marmor (PhD) Boris Shnits (PhD) Illana Bendavid (PhD)

BRAUDE - College of Engineering, Karmiel, ISRAEL

Valencia - ENBIS 2023 September, 13



### Motivation

- Assumption:
  - Reduce treatment time variance will lead to better (expected) appointments (Kuiper et al., 2019).
  - Data mining (regression) will lead to variance reduction (better prediction) (Golmohammadi et al., 2023).
  - Better appointment will lead to better operational performance. (Christopher et al., 2022)
  - Appointment needs to be simple and easy to use (Savelsbergh & Smilowitz, 2016).
  - The more complex classification the more complex to operate in practice.

## Methodology steps

- Classify patients by their service duration in a nested / hierarchal way:
  - "Best" classifier (using CART) F options.
  - Folding tree in steps to get "Less Good" classifiers.
  - End with F classifications for each patient service duration.
- Use appointment algorithm (AA)
  - Start with the "best" classifier (of the previous step)
  - Repeat AA for different "days sequence" (random patients) until the operational outcomes meet an accuracy criterion (e.g., HW/μ<0.005).</li>
  - Repeat last point with the next "best" (not used) classifier
  - Repeat last point until the operational outcomes change (for the worse) statistically from the "best" classification.
- We identify the best practical classification as the one we used last (in the previous step) before we got statistically changes in performance.

## Key Performance Indicator (KPI)

• EoD – End of Day

The expected time the last customer/patient finishes service/treatment.

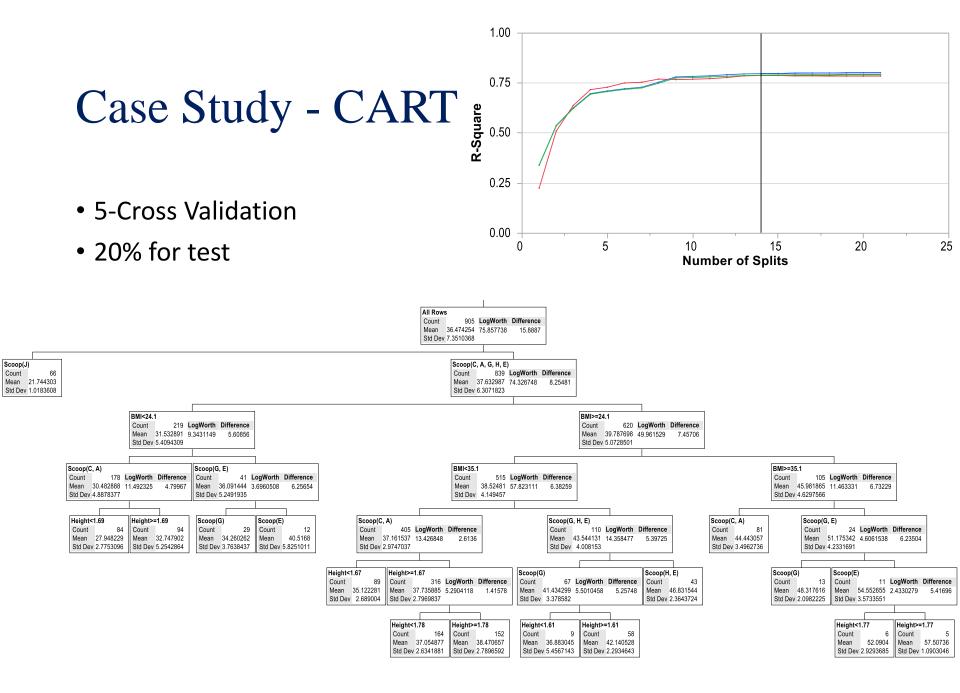
Utilization

The ratio between the sum of services duration done during regular shift hours and the shift length multiplied by number of servers.

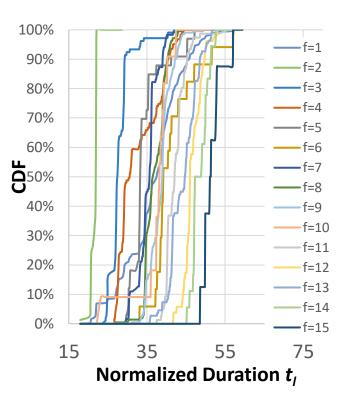
#### • OT – Over Time

The sum of services duration done after regular shift hours

• IT – Idle Time

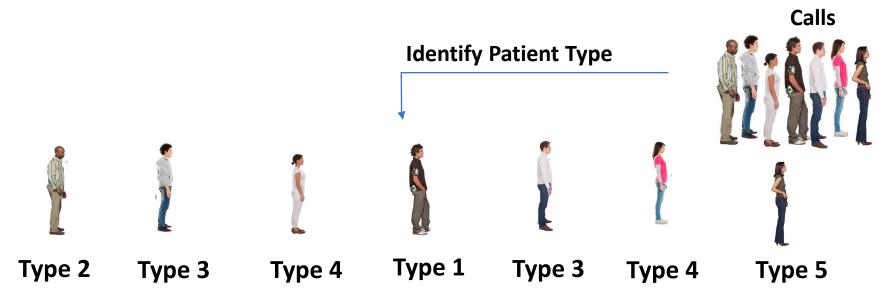

The sum of idle times between services

• OL – Offered Load

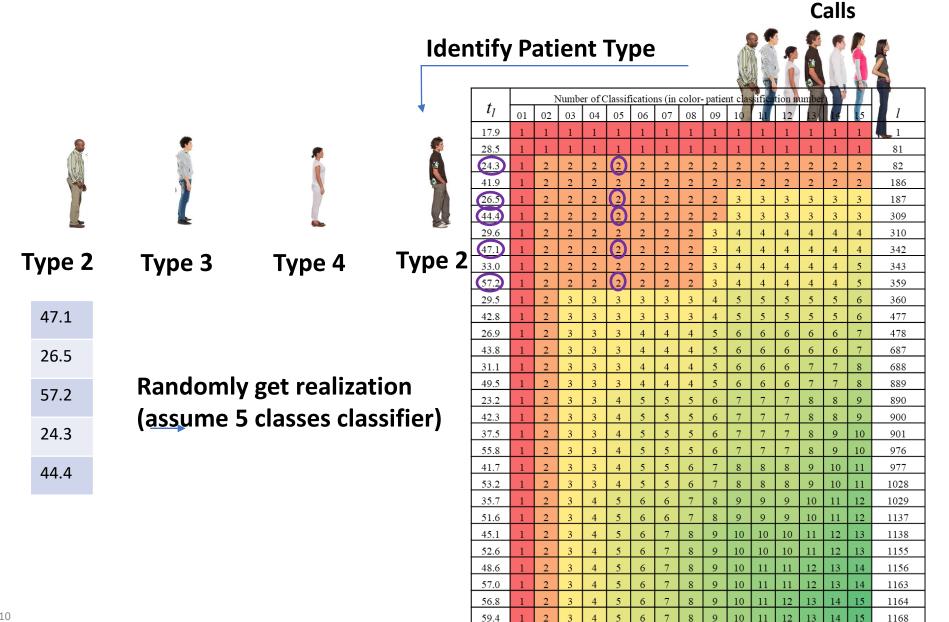

The sum of expected service duration

### Case Study - Data

- Data Mayo Clinic (October 2021):
  - 1,168 PET Scans; ~60 per day
  - Patient age (avg=65.7; sd=13.5)
  - Patient gender (36.6% females; 63.4% males)
  - Patient weight (avg=84.4kg; sd=20.9)
  - Patient height (avg=1.72m; sd=0.099
  - Scanner type (2 fast scanners which handle 54% of scans; 2 slow which handle 46% of scans)
  - Patient scan description (area to scan)
  - Scan duration
- Remark:
  - Since we have two type of scanners (faster and slower), we normalized the duration, so it fits the slower scanner times.
  - Appointment scheduling is based on QoS (Quality of Service), meaning the (expected) probability of appointment to start on time.




### Case Study – Patient Classification by CART "Size"




| +     |    | Number of Classifications (in color- patient classification number) |    |    |    |    |    |    |    |    |    |    |    |    |    |      |
|-------|----|---------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|------|
| $t_l$ | 01 | 02                                                                  | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | l    |
| 17.9  | 1  | 1                                                                   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1    |
| 28.5  | 1  | 1                                                                   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 81   |
| 24.3  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 82   |
| 41.9  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 186  |
| 26.5  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 3  | 3  | 3  | 3  | 3  | 187  |
| 44.4  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 3  | 3  | 3  | 3  | 3  | 309  |
| 29.6  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 4  | 4  | 4  | 4  | 4  | 4  | 310  |
| 47.1  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 4  | 4  | 4  | 4  | 4  | 4  | 342  |
| 33.0  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 4  | 4  | 4  | 4  | 4  | 5  | 343  |
| 57.2  | 1  | 2                                                                   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 4  | 4  | 4  | 4  | 4  | 5  | 359  |
| 29.5  | 1  | 2                                                                   | 3  | 3  | 3  | 3  | 3  | 3  | 4  | 5  | 5  | 5  | 5  | 5  | 6  | 360  |
| 42.8  | 1  | 2                                                                   | 3  | 3  | 3  | 3  | 3  | 3  | 4  | 5  | 5  | 5  | 5  | 5  | 6  | 477  |
| 26.9  | 1  | 2                                                                   | 3  | 3  | 3  | 4  | 4  | 4  | 5  | 6  | 6  | 6  | 6  | 6  | 7  | 478  |
| 43.8  | 1  | 2                                                                   | 3  | 3  | 3  | 4  | 4  | 4  | 5  | 6  | 6  | 6  | 6  | 6  | 7  | 687  |
| 31.1  | 1  | 2                                                                   | 3  | 3  | 3  | 4  | 4  | 4  | 5  | 6  | 6  | 6  | 7  | 7  | 8  | 688  |
| 49.5  | 1  | 2                                                                   | 3  | 3  | 3  | 4  | 4  | 4  | 5  | 6  | 6  | 6  | 7  | 7  | 8  | 889  |
| 23.2  | 1  | 2                                                                   | 3  | 3  | 4  | 5  | 5  | 5  | 6  | 7  | 7  | 7  | 8  | 8  | 9  | 890  |
| 42.3  | 1  | 2                                                                   | 3  | 3  | 4  | 5  | 5  | 5  | 6  | 7  | 7  | 7  | 8  | 8  | 9  | 900  |
| 37.5  | 1  | 2                                                                   | 3  | 3  | 4  | 5  | 5  | 5  | 6  | 7  | 7  | 7  | 8  | 9  | 10 | 901  |
| 55.8  | 1  | 2                                                                   | 3  | 3  | 4  | 5  | 5  | 5  | 6  | 7  | 7  | 7  | 8  | 9  | 10 | 976  |
| 41.7  | 1  | 2                                                                   | 3  | 3  | 4  | 5  | 5  | 6  | 7  | 8  | 8  | 8  | 9  | 10 | 11 | 977  |
| 53.2  | 1  | 2                                                                   | 3  | 3  | 4  | 5  | 5  | 6  | 7  | 8  | 8  | 8  | 9  | 10 | 11 | 1028 |
| 35.7  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 6  | 7  | 8  | 9  | 9  | 9  | 10 | 11 | 12 | 1029 |
| 51.6  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 6  | 7  | 8  | 9  | 9  | 9  | 10 | 11 | 12 | 1137 |
| 45.1  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 10 | 10 | 11 | 12 | 13 | 1138 |
| 52.6  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 10 | 10 | 11 | 12 | 13 | 1155 |
| 48.6  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 11 | 12 | 13 | 14 | 1156 |
| 57.0  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 11 | 12 | 13 | 14 | 1163 |
| 56.8  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 1164 |
| 59.4  | 1  | 2                                                                   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 1168 |

### PMSN (Paced Multi Server Numerical-based) Algorithm

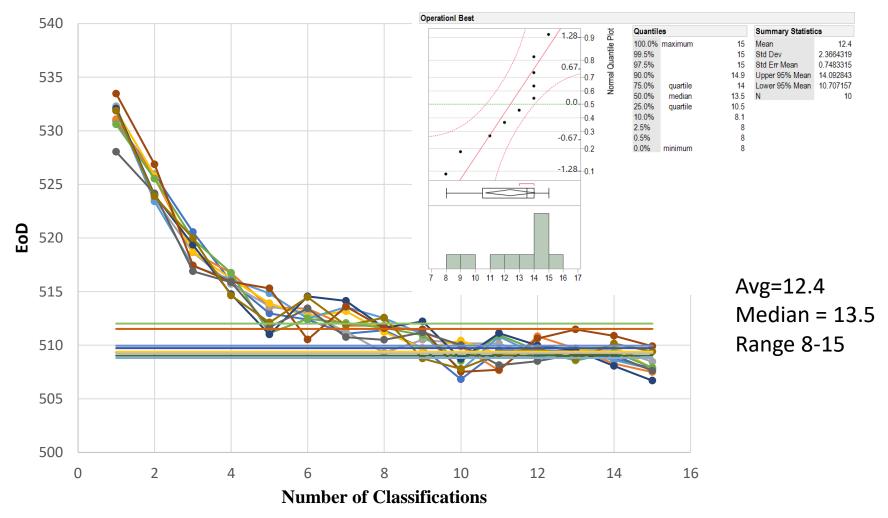


### PMSN (Paced Multi Server Numerical-based) Algorithm



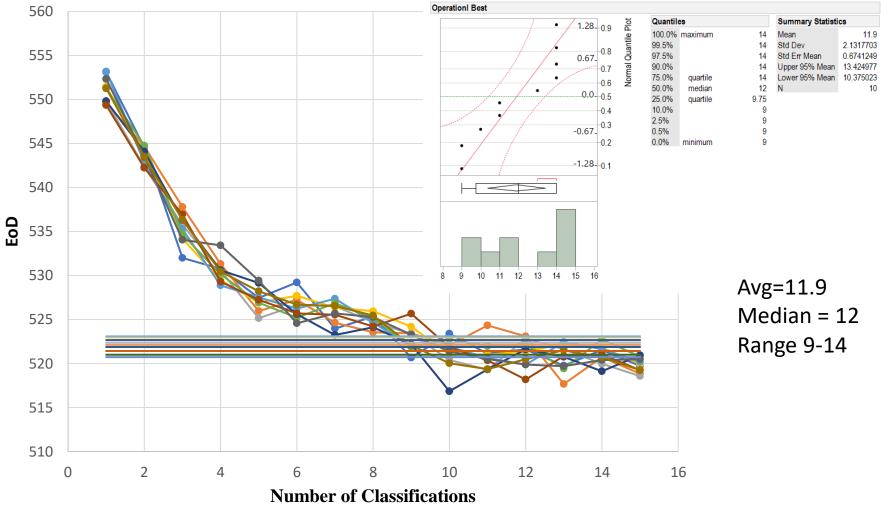
#### PMSN (Paced Multi Server Numerical-based) Algorithm

| Duration   |   |             |      |        |        |        |        |        |       | Finisl | h Time |       |                 |            |
|------------|---|-------------|------|--------|--------|--------|--------|--------|-------|--------|--------|-------|-----------------|------------|
|            |   | P1          | P2   | P3     | P4     | P5     | P6     | P7     | P1    | P2     | P3     | P4    | First to Finish |            |
| _          |   | Type 2 Type |      | Type 4 | Type 1 | Туре 3 | Type 4 | Type 5 | m1(s) | m2(s)  | m3(f)  | m4(f) | (macine)        |            |
| _          | 1 | 47.1        | 36.0 | 47.2   | 20.7   | 35.9   | 52.4   | 37.6   | 47.1  | 36.0   | 34.2   | 15.0  | (m4) 15.0       |            |
| tion       | 2 | 26.5        | 34.4 | 46.1   | 21.6   | 38.8   | 45.6   | 46.8   | 26.5  | 34.4   | 33.4   | 15.7  | (m4) 15.7       | => A5=15.9 |
| Realiation | 3 | 57.2        | 34.6 | 45.8   | 21.1   | 40.8   | 41.3   | 43.6   | 57.2  | 34.6   | 33.2   | 15.3  | (m4) 15.3       | (80%)      |
| Re         | 4 | 24.3        | 40.0 | 46.0   | 21.9   | 34.7   | 45.8   | 47.0   | 24.3  | 40.0   | 33.3   | 15.9  | (m4) 15.9       | (0070)     |
|            | 5 | 44.4        | 37.4 | 43.1   | 22.1   | 39.6   | 38.8   | 47.1   | 44.4  | 37.4   | 31.2   | 16.0  | (m4) 16.0       |            |


#### Considering fast pace (1.38)

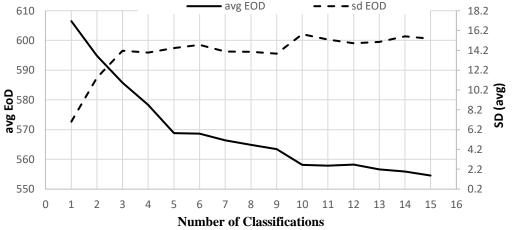
#### 15.9+35.9/1.38=41.9

|       | Finish | Time  | ↓ ·   | First to Finish |            |       | Finish | n Time |       | First to Finish |
|-------|--------|-------|-------|-----------------|------------|-------|--------|--------|-------|-----------------|
| m1(s) | m2(s)  | m3(f) | m4(f) | (macine)        |            | m1(s) | m2(s)  | m3(f)  | m4(f) | (macine)        |
| 47.1  | 36     | 34.2  | 41.9  | (m3) 34.2       |            | 47.1  | 36.0   | 72.2   | 41.9  | (m2) 36.0       |
| 26.5  | 34.4   | 33.4  | 44.0  | (m1) 26.5       | => A6=33.2 | 78.8  | 34.4   | 33.4   | 44.0  | (m3) 33.4       |
| 57.2  | 34.6   | 33.2  | 45.5  | (m3) 33.2       | => A0=33.2 | 57.2  | 34.6   | 63.1   | 45.5  | (m2) 34.6       |
| 24.3  | 40     | 33.3  | 41.0  | (m1) 24.3       |            | 79.0  | 40.0   | 33.3   | 41.0  | (m3) 33.3       |
| 44.4  | 37.4   | 31.2  | 44.6  | (m3) 31.2       |            | 44.4  | 37.4   | 61.3   | 44.6  | (m2) 37.4       |


=> A1=A2=A3=A4=0; A5=15.9; A6=33.2; A7=36

### Case Study – Results (Operational Best)

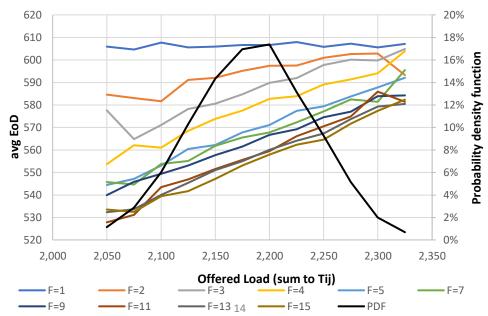



Line with markings— the expected EoD; Clear line — threshold to stop. QoS=0.7

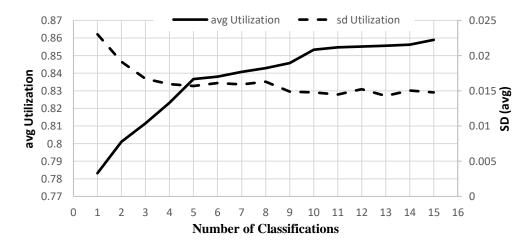
### Case Study – Results (Operational Best)



Line with markings– the expected EoD; Clear line – threshold to stop. QoS=0.8


### Case Study – Results (EoD) for QoS=0.95

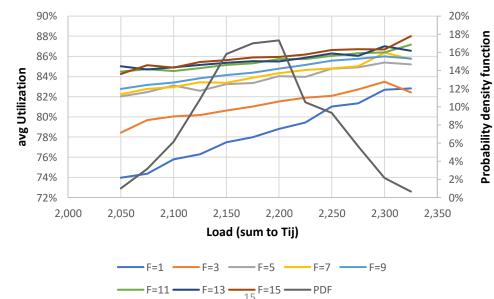



With the effect of Offered Load

Findings:

- EoD increases with the distance to the best classifier.
- The EoD is less robust with Offered Load when closer to best classifier.




## Case Study – Results (Utilization) for QoS=0.95



With the effect of Offered Load

Findings:

- Utilization **decreases** with the distance to the best classifier.
- The Utilization is more robust with Offered Load when closer to best classifier.



### Conclusion and Future Research

- We introduce an algorithm for finding the best practical classifier that is easier to implement.
- Looking for the best classifier does not always translate into the best performance in practice.
- The complexity is needed in lower QoS and less needed in a high QoS system.
- For some KPIs, the best practice classifier is robust (i.e., Utilization), but sometimes it is the least robust option (i.e., EoD).
- Future research questions:
  - Can we get the same results with repeated CART algorithm?
  - Is there a connection between R-Square and the effect on our algorithm (big changes result in big effect)?

# Questions / remarks?

E-mail: myariv@braude.ac.il