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Motivation

• Assumption:
• Reduce treatment time variance will lead to better (expected) 

appointments (Kuiper et al., 2019).

• Data mining (regression) will lead to variance reduction (better 
prediction) (Golmohammadi et al., 2023).

• Better appointment will lead to better operational performance. 
(Christopher et al., 2022)

• Appointment needs to be simple and easy to use (Savelsbergh & 
Smilowitz, 2016).

• The more complex classification the more complex to operate in 
practice.
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Methodology steps

• Classify patients by their service duration in a nested / hierarchal 
way:
• “Best” classifier (using CART) – F options.
• Folding tree in steps to get “Less Good” classifiers. 
• End with F classifications for each patient service duration.

• Use appointment algorithm (AA)
• Start with the "best" classifier (of the previous step)
• Repeat AA for different "days sequence" (random patients) until the 

operational outcomes meet an accuracy criterion (e.g., HW/m<0.005). 
• Repeat last point with the next "best" (not used) classifier
• Repeat last point until the operational outcomes change (for the worse) 

statistically from the "best" classification. 

• We identify the best practical classification as the one we used 
last (in the previous step) before we got statistically changes in 
performance.
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Key Performance Indicator (KPI)

• EoD – End of Day
The expected time the last customer/patient finishes service/treatment.

• Utilization 
The ratio between the sum of services duration done during regular shift 
hours and the shift length multiplied by number of servers. 

• OT – Over Time
The sum of services duration done after regular shift hours

• IT – Idle Time
The sum of idle times between services

• OL – Offered Load
The sum of expected service duration 
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Case Study - Data

• Data – Mayo Clinic (October 2021): 
• 1,168 PET Scans; ~60 per day

• Patient age (avg=65.7; sd=13.5)

• Patient gender (36.6% females; 63.4% males)

• Patient weight (avg=84.4kg; sd=20.9)

• Patient height (avg=1.72m; sd=0.099

• Scanner type (2 fast scanners which handle 54% of scans; 2 slow which handle 
46% of scans) 

• Patient scan description (area to scan)

• Scan duration

• Remark: 
• Since we have two type of scanners (faster and slower), we normalized the 

duration, so it fits the slower scanner times.

• Appointment scheduling is based on QoS (Quality of Service), meaning the 
(expected) probability of appointment to start on time.  
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Case Study - CART

• 5-Cross Validation

• 20% for test
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Case Study –
Patient 
Classification by 
CART “Size”  
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PMSN (Paced Multi Server Numerical-based) Algorithm
Calls 

Identify Patient Type
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PMSN (Paced Multi Server Numerical-based) Algorithm
Calls 

Identify Patient Type

Type 2 Type 3 Type 4 Type 2 Type 3 Type 4 Type 2

Randomly get realization
(assume 5 classes classifier)
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PMSN (Paced Multi Server Numerical-based) Algorithm

=> A6=33.2

=> A1=A2=A3=A4=0; A5=15.9; A6=33.2; A7=36

=> A5=15.9

(80%)

Considering fast pace (1.38)
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Case Study – Results (Operational Best)
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Case Study – Results (Operational Best)

Line with markings– the expected EoD; Clear line – threshold to stop. QoS=0.8
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Case Study – Results (EoD) for QoS=0.95

With the effect of Offered Load
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Findings:
• EoD increases with the distance 

to the best classifier.
• The EoD is less robust with 

Offered Load when closer to best 
classifier.
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Case Study – Results (Utilization) for QoS=0.95

With the effect of Offered Load
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Findings:
• Utilization decreases with the 

distance to the best classifier.
• The Utilization is more robust

with Offered Load when 
closer to best classifier.
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Conclusion and Future Research

• We introduce an algorithm for finding the best practical classifier that 
is easier to implement.

• Looking for the best classifier does not always translate into the best 
performance in practice. 

• The complexity is needed in lower QoS and less needed in a high QoS 
system.

• For some KPIs, the best practice classifier is robust (i.e., Utilization), 
but sometimes it is the least robust option (i.e., EoD).

• Future research questions:
• Can we get the same results with repeated CART algorithm?

• Is there a connection between R-Square and the effect on our algorithm (big 
changes result in big effect)?
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E-mail: myariv@braude.ac.il

Questions / remarks?
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