
Pattern matching for multivariate time series

forecasting

ENBIS-24 Conference
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Introduction



Explanation of the aim

For each time series i of a set I of time series, we have a time series at a

set of times ti = {ti1, . . . , tn}:

xi (ti ) = xi (ti1), . . . , xi (tn)

So the objective is to produce predictions over a range of times

th = {tn+1, . . . , tn+h}.
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Figure 1: Representation of our problem
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Weigthed Nearest Neighbors

(WNN) for multivariate time

series(WNNmulti)



Weighted Nearest Neighbors (WNN) [3]

With nearest neighbor search, the objective is to predict the sequence of

a curve up to the horizon h. Two hyperparameters need to be set: w and

k .

Figure 2: Past/future split using a sliding window.
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Weigthed Nearest Neighbors (WNN) for multivariate time

series(WNNmulti)

In our context, we propose to use information from several curves to

predict a particular curve.
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Weigthed Nearest Neighbors (WNN) for multivariate time

series(WNNmulti)

WNNmulti algorithm:

• Splitting the curves to obtain 2 sets: Ep (past) and Ef (future)

• For each curve :

• Euclidean distance between the target pattern and the other patterns

in Ep.

• Selection of k patterns.

• Calculation of αi weights (based on distances).

• Calculation of the weighted average of all futures (Ef ) corresponding

to the k nearest neighbors.
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Gaussian processes for

forecasting multivariate time

series



Gaussian processes

A Gaussian process is fully specified by a mean function m(.) and a

covariance function K (., .). For regression, we can write :

yi = fi + ϵi (1)

where fi ∼ GP(m(.),K (., .)) with m(.) the mean function, K (., .) the

covariate function et ϵi ∼ N (0, σ2).
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Multi-task Gaussian processes with common mean

x

t
t1

. . . tn tn+1
. . . tn+h

xi (t)xi (th)

Figure 3: Representation of the multi-task Gaussian process problem

Two different approaches are proposed :

• MAGMA [1] : yi = µ0 + fi + ϵi

• MagmaClust [2] : yi = µk + fi + ϵi

with µ0 ∼ GP(m0(.),Kθ0(., .)) the mean GP common to all individuals,

µk ∼ GP(mk(.),Kθk (., .)) the common mean GP of the cluster k,

fi ∼ GP(m(.),K(., .)) the specific GP of the i-th individual et ϵi the noise.
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MagmaKNN
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Figure 4: Representation of the multi-task Gaussian process problem

To use multi-task Gaussian processes in our context, we propose a new method

MagmaKNN :

• Cutting the curves to obtain a sample of past/future sub-curves (curves in

black).

• Selection of the k nearest neighbors of the target curve (curve in red).

• Using MAGMA with the reduced sample size.
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Experiments



Experiments design

Data are from the electricity Spanish market (www.omie.es) where the

objective is to predict electricity prices (expressed in Euro/MWh) and

electricity demand (expressed in MW) for the next 24 hours.

• Validation dataset :

n = 183 days, k = [2, 5, 10, 20] and w = [24, 48, 72, 96]

• Test dataset : n = 183 days with the best hyperparameters.
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Validation dataset

Data Model wbest kbest RMSE MAE

Prices MV-kWNN [4] 24 20 30.14/25.07 26.35/21.26

WNNmulti 24 10 27.63/25.33 23.75/20.34

MagmaKNN 24 10 28.29/24.49 24.06/20.47

Demand MV-kWNN 24 20 1822.15/1653.6 1605.16/1407.03

WNNmulti 24 20 1717.87/1594.29 1504.94/1359.92

MagmaKNN 24 20 1835.06/1642.45 1605.39/1363.5

Table 1: Means/medians for pattern matching methods

HP for XGBoost : nestimators = [50, 100, 150], max depth = [5, 10, 15] and learning rate =

[0.01, 0.1, 0.3].

HP for RF : nestimators = [50, 100, 150] and max depth = [5, 10, 15].

Data Model nestimators max depth learning rate (lr) RMSE MAE

Prices XGBoost 100 10 0.1 20.97/17.1 17.28/13.67

RF 150 15 - 21.78/19.01 18.1/15.27

Demand XGBoost 50 5 0.1 1244.01/1157.8 1024.53/956.04

RF 150 10 - 1345.86/1166.27 1092.84/966.81

Table 2: Means/medians for machine learning methods
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Test dataset

Data Model wbest kbest RMSE MAE

Prices MV-kWNN 24 20 17.46/13.62 14.52/11.78

WNNmulti 24 10 17.2/14.46 14.26/12.25

MagmaKNN 24 10 19.89/16.17 16.64/13.51

Demand MV-kWNN 24 20 1359.96/1198.46 1135.08/997.49

WNNmulti 24 20 1301.85/1107.5 1081.08/909.52

MagmaKNN 24 20 1416.59/1147.73 1174/925.82

Table 3: Means/medians for pattern matching methods

Data Model nestimators max depth lr pdq RMSE MAE

Prices XGBoost 100 10 0.1 - 15.9/12.31 12.66/10.06

RF - - 16.33/13.34 13.37/11.24

ARIMAX - - - (2,1,2) 26.39/23.23 21.81/19.3

Demand XGBoost 50 5 0.1 - 1124.97/1001.82 931.98/808.26

RF - - 1229.02/1108.13 1021.22/896.32

ARIMAX - - - (2,0,1) 5201.45/5222.88 4359.06/4264.51

Table 4: Means/medians for machine learning methods
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Conclusion



Conclusion

• With our methods, we provide flexibility to the nearest neighbor

search.

• The general idea of nearest neighbor selection is interesting in a

multivariate context with many individuals.

• The use of machine learning methods such as XGBoost gives good

results and that may be interesting for our general idea of nearest

neighbor selection.
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