Pattern matching for multivariate time series forecasting

ENBIS-24 Conference

Noé Lebreton/Julien Jacques/Julien Ah-Pine

16 september 2024

DATA-PRISME / ERIC Laboratory Lyon

1. Introduction

2. Weigthed Nearest Neighbors (WNN) for multivariate time series(WNN_{multi})

- 3. Gaussian processes for forecasting multivariate time series
- 4. Experiments
- 5. Conclusion

Introduction

Explanation of the aim

For each time series *i* of a set *I* of time series, we have a time series at a set of times $\mathbf{t}_i = \{t_{i1}, \dots, t_n\}$:

$$x_i(\mathbf{t}_i) = x_i(t_{i1}), \ldots, x_i(t_n)$$

So the objective is to produce predictions over a range of times $\mathbf{t}_h = \{t_{n+1}, \dots, t_{n+h}\}.$

Figure 1: Representation of our problem

Weigthed Nearest Neighbors (WNN) for multivariate time series(*WNN*_{multi})

With nearest neighbor search, the objective is to predict the sequence of a curve up to the horizon h. Two hyperparameters need to be set: w and k.

Figure 2: Past/future split using a sliding window.

Weigthed Nearest Neighbors (WNN) for multivariate time series(*WNN_{multi}*)

In our context, we propose to use information from several curves to predict a particular curve.

Weigthed Nearest Neighbors (WNN) for multivariate time series(*WNN_{multi}*)

WNN_{multi} algorithm:

- Splitting the curves to obtain 2 sets: E_p (past) and E_f (future)
- For each curve :
 - Euclidean distance between the target pattern and the other patterns in *E*_p.
 - Selection of k patterns.
 - Calculation of α_i weights (based on distances).
 - Calculation of the weighted average of all futures (*E_f*) corresponding to the *k* nearest neighbors.

Gaussian processes for forecasting multivariate time series

A Gaussian process is fully specified by a mean function m(.) and a covariance function K(.,.). For regression, we can write :

$$y_i = f_i + \epsilon_i \tag{1}$$

where $f_i \sim GP(m(.), K(., .))$ with m(.) the mean function, K(., .) the covariate function et $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Multi-task Gaussian processes with common mean

Figure 3: Representation of the multi-task Gaussian process problem

Two different approaches are proposed :

- MAGMA [1] : $y_i = \mu_0 + f_i + \epsilon_i$
- MagmaClust [2] : $y_i = \mu_k + f_i + \epsilon_i$

with $\mu_0 \sim GP(m_0(.), K_{\theta_0}(., .))$ the mean GP common to all individuals, $\mu_k \sim GP(m_k(.), K_{\theta_k}(., .))$ the common mean GP of the cluster k, $f_i \sim GP(m(.), K(., .))$ the specific GP of the i-th individual et ϵ_i the noise.

MagmaKNN

Figure 4: Representation of the multi-task Gaussian process problem

To use multi-task Gaussian processes in our context, we propose a new method $\ensuremath{\mathsf{MagmaKNN}}$:

- Cutting the curves to obtain a sample of past/future sub-curves (curves in black).
- Selection of the *k* nearest neighbors of the target curve (curve in red).
- Using MAGMA with the reduced sample size.

Experiments

Data are from the electricity Spanish market (www.omie.es) where the objective is to predict electricity prices (expressed in Euro/MWh) and electricity demand (expressed in MW) for the next 24 hours.

• Validation dataset :

n = 183 days, k = [2, 5, 10, 20] and w = [24, 48, 72, 96]

• Test dataset : n = 183 days with the best hyperparameters.

Validation dataset

Data	Model	Wbest	k _{best}	RMSE	MAE
Prices	MV-kWNN [4]	24	20	30.14/ 25.07	26.35/21.26
	WNN _{multi}	24	10	27.63/25.33	23.75/20.34
	MagmaKNN	24	10	28.29/24.49	24.06/20.47
Demand	MV-kWNN	24	20	1822.15/1653.6	1605.16/1407.03
	WNN _{multi}	24	20	1717.87/1594.29	1504.94/1359.92
	MagmaKNN	24	20	1835.06/1642.45	1605.39/ 1363.5

Table 1: Means/medians for pattern matching methods

HP for XGBoost : $n_{estimators} = [50, 100, 150]$, max depth = [5, 10, 15] and learning rate = [0.01, 0.1, 0.3].

HP for RF : $n_{estimators} = [50, 100, 150]$ and max depth = [5, 10, 15].

Data	Model	n _{estimators}	max depth	learning rate (Ir)	RMSE	MAE
Prices	XGBoost	100	10	0.1	20.97/17.1	17.28/13.67
	RF	150	15	-	21.78/19.01	18.1/15.27
Demand	XGBoost	50	5	0.1	1244.01/1157.8	1024.53/956.04
	RF	150	10	-	1345.86/1166.27	1092.84/966.81

Table 2: Means/medians for machine learning methods

Test dataset

Data	Model	Wbest	k _{best}	RMSE	MAE
Prices	MV-kWNN	24	20	17.46/ 13.62	14.52/ 11.78
	WNN _{multi}	24	10	17.2 /14.46	14.26 /12.25
	MagmaKNN	24	10	19.89/16.17	16.64/13.51
Demand	MV-kWNN	24	20	1359.96/1198.46	1135.08/997.49
	WNN _{multi}	24	20	1301.85/1107.5	1081.08/909.52
	MagmaKNN	24	20	1416.59/1147.73	1174/925.82

Table 3: Means/medians for pattern matching methods

Data	Model	n _{estimators}	max depth	lr	pdq	RMSE	MAE
Prices	XGBoost	100	10	0.1	-	15.9/12.31	12.66/10.06
	RF			-	-	16.33/13.34	13.37/11.24
	ARIMAX	-	-	-	(2,1,2)	26.39/23.23	21.81/19.3
Demand	XGBoost	50	5	0.1	-	1124.97/1001.82	931.98/808.26
	RF			-	-	1229.02/1108.13	1021.22/896.32
	ARIMAX	-	-	-	(2,0,1)	5201.45/5222.88	4359.06/4264.51

Table 4: Means/medians for machine learning methods

Conclusion

- With our methods, we provide flexibility to the nearest neighbor search.
- The general idea of nearest neighbor selection is interesting in a multivariate context with many individuals.
- The use of machine learning methods such as XGBoost gives good results and that may be interesting for our general idea of nearest neighbor selection.

Bibliographie

