Pattern matching for multivariate time series forecasting

ENBIS-24 Conference

Noé Lebreton/Julien Jacques/Julien Ah-Pine

16 september 2024

DATA-PRISME / ERIC Laboratory Lyon

1. [Introduction](#page-2-0)

- 2. [Weigthed Nearest Neighbors \(WNN\) for multivariate time](#page-4-0) [series\(](#page-4-0)WNN_{multi})
- 3. [Gaussian processes for forecasting multivariate time series](#page-8-0)
- 4. [Experiments](#page-12-0)
- 5. [Conclusion](#page-16-0)

[Introduction](#page-2-0)

Explanation of the aim

For each time series *i* of a set *l* of time series, we have a time series at a set of times $\mathbf{t}_i = \{t_{i1}, \ldots, t_n\}$:

$$
x_i(\mathbf{t}_i) = x_i(t_{i1}), \ldots, x_i(t_n)
$$

So the objective is to produce predictions over a range of times $t_h = \{t_{n+1}, \ldots, t_{n+h}\}.$

Figure 1: Representation of our problem

[Weigthed Nearest Neighbors](#page-4-0) [\(WNN\) for multivariate time](#page-4-0) [series\(](#page-4-0)WNN_{multi})

With nearest neighbor search, the objective is to predict the sequence of a curve up to the horizon h . Two hyperparameters need to be set: w and k.

Figure 2: Past/future split using a sliding window.

Weigthed Nearest Neighbors (WNN) for multivariate time series(WNN_{multi})

In our context, we propose to use information from several curves to predict a particular curve.

Weigthed Nearest Neighbors (WNN) for multivariate time series(WNN_{multi})

WNN_{multi} algorithm:

- Splitting the curves to obtain 2 sets: E_p (past) and E_f (future)
- For each curve :
	- Euclidean distance between the target pattern and the other patterns in E_p .
	- Selection of k patterns.
	- Calculation of α_i weights (based on distances).
	- Calculation of the weighted average of all futures (E_f) corresponding to the k nearest neighbors.

[Gaussian processes for](#page-8-0) [forecasting multivariate time](#page-8-0) [series](#page-8-0)

A Gaussian process is fully specified by a mean function $m(.)$ and a covariance function $K(.,.)$. For regression, we can write :

$$
y_i = f_i + \epsilon_i \tag{1}
$$

where $f_i \sim GP(m(.), K(., .))$ with $m(.)$ the mean function, $K(., .)$ the covariate function et $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Multi-task Gaussian processes with common mean

Figure 3: Representation of the multi-task Gaussian process problem

Two different approaches are proposed :

- MAGMA [\[1\]](#page-18-1) : $y_i = \mu_0 + f_i + \epsilon_i$
- MagmaClust $[2]$: $y_i = \mu_k + f_i + \epsilon_i$

with $\mu_0 \thicksim \mathit{GP}(m_0(.), \mathcal{K}_{\theta_0}(.,.))$ the mean GP common to all individuals, $\mu_k \thicksim \mathsf{GP}(m_k(.), \mathsf{K}_{\theta_k}(.,.))$ the common mean GP of the cluster k , $f_i \sim GP(m(.), K(., .))$ the specific GP of the i-th individual et ϵ_i the noise.

MagmaKNN

Figure 4: Representation of the multi-task Gaussian process problem

To use multi-task Gaussian processes in our context, we propose a new method MagmaKNN :

- Cutting the curves to obtain a sample of past/future sub-curves (curves in black).
- Selection of the k nearest neighbors of the target curve (curve in red).
- Using MAGMA with the reduced sample size.

[Experiments](#page-12-0)

Data are from the electricity Spanish market (<www.omie.es>) where the objective is to predict electricity prices (expressed in Euro/MWh) and electricity demand (expressed in MW) for the next 24 hours.

• Validation dataset :

 $n = 183$ days, $k = [2, 5, 10, 20]$ and $w = [24, 48, 72, 96]$

• Test dataset : $n = 183$ days with the best hyperparameters.

Validation dataset

Data	Model	W_{best}	k_{best}	RMSE	MAE
Prices	MV-kWNN [4]	24 20		30.14/25.07	26.35/21.26
	WNN_{multi}	24	10	27.63/25.33	23.75/20.34
	MagmaKNN	24	10	28.29/24.49	24.06/20.47
Demand	MV-kWNN	24	20	1822.15/1653.6	1605.16/1407.03
	WNN_{multi}	24	20	1717.87/1594.29	1504.94/1359.92
	MagmaKNN	24	20	1835.06/1642.45	1605.39/1363.5

Table 1: Means/medians for pattern matching methods

HP for XGBoost : $n_{estimators} = [50, 100, 150]$, max depth = $[5, 10, 15]$ and learning rate = [0.01, 0.1, 0.3].

HP for RF : $n_{estimators} = [50, 100, 150]$ and max depth $= [5, 10, 15]$.

Data	Model	$n_{estimators}$	max depth	learning rate (Ir)	RMSE	MAE
Prices	XGBoost	100	10	0.1	20.97/17.1	17.28/13.67
	RF	150	15	$\overline{}$	21.78/19.01	18.1/15.27
Demand	XGBoost	50		0.1	1244.01/1157.8	1024.53/956.04
	RF	150	10	$\overline{}$	1345.86/1166.27	1092.84/966.81

Table 2: Means/medians for machine learning methods

Test dataset

Data	Model	Whest	k_{best}	RMSE	MAE
Prices	MV-kWNN	24	20	17.46/13.62	14.52/11.78
	WNN_{multi}	24	10	17.2/14.46	14.26/12.25
	MagmaKNN	24	10	19.89/16.17	16.64/13.51
Demand	MV-kWNN	24	20	1359.96/1198.46	1135.08/997.49
	WNN_{multi}	24	20	1301.85/1107.5	1081.08/909.52
	MagmaKNN	24	20	1416.59/1147.73	1174/925.82

Table 3: Means/medians for pattern matching methods

Data	Model	n estimators	max depth	r	pdq	RMSE	MAE
Prices	XGBoost	100	10	0.1		15.9/12.31	12.66/10.06
	RF			$\overline{}$		16.33/13.34	13.37/11.24
	ARIMAX	$\overline{}$	$\overline{}$	$\overline{}$	(2,1,2)	26.39/23.23	21.81/19.3
Demand	XGBoost	50	5	0.1		1124.97/1001.82	931.98/808.26
	RF			$\overline{}$		1229.02/1108.13	1021.22/896.32
	ARIMAX	$\overline{}$	$\overline{}$	$\overline{}$	(2,0,1)	5201.45/5222.88	4359.06/4264.51

Table 4: Means/medians for machine learning methods

[Conclusion](#page-16-0)

- With our methods, we provide flexibility to the nearest neighbor search.
- The general idea of nearest neighbor selection is interesting in a multivariate context with many individuals.
- The use of machine learning methods such as XGBoost gives good results and that may be interesting for our general idea of nearest neighbor selection.

Bibliographie

