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Abstract. We introduce a local surrogate approach for explainable time-
series forecasting. An initially non-interpretable predictive model to im-
prove the forecast of a classical time-series ’base model’ is used. ’Ex-
plainability’ of the correction is provided by fitting the base model again
to the data from which the error prediction is removed (subtracted),
yielding a difference in the model parameters which can be interpreted.
We provide an illustrative examples to demonstrate the potential of the
method to discover and explain underlying patterns in the data.
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1 Introduction

Explainable AI (XAI) has seen a growing research interest as the demand for
accountability in predictive modeling for various applications has increased [4,
2, 5]. In particular, complex AI models are widely used in modern time-series
applications and therefore explainability plays a fundamental role [9, 7]. Local
surrogate modeling methods such as LIME [8], SHAP [14] and others [3] have
delivered the possibility to interpret the action of predictive models around a
specific instance, that is, in the neighborhood of a single data point in the input
space. While there are many ways in which these local approaches can be used
[15, 11], there is also the fundamental question of how to determine the size of
the neighborhood [10].

As model agnostic local surrogate modeling is defined by the attempt to
mimic any given block-box AI model locally by a different, interpretable model,
uncertainties of these models may play a major role in the quality of the emergent
explanations ([10], Sect. 5.1.11). From the viewpoint of defining explainability
by local surrogates, it is therefore imperative to discuss fidelity (of the explaining
model toward the one to be explained) in connection with model accuracy. Such
a definition has been supplied in [13]. Similar to this work, we discuss the optimal
locality of the instance to be explained.

Further approaches yielding explanations of the action of predictive models
can be seen in a particular branch of physics-informed, or knowledge-guided
machine learning [12]. Also, entropy-based methods are successful in explaining
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time series anomalies in a physical context [1]. BAPC has a characteristic way
of expressing explanations: To explain a single instance in the input space, a
neighborhood is selected and another fit of the interpretable base model is carried
out with data modified (corrected by the AI model to be explained) on just this
neighborhood. The change of the interpretable fitting parameters is then taken
as the ’explanation’ of the local action of the correcting AI model (see Section 2).
Naturally, the choice of the neighborhood is one of the most significant aspect
of the method.

The present work extends the BAPC method to time series forecasting, where
an interpretable time series model is combined with a correcting high performing
machine learning model. The latter is explained inside a suitably chosen time
window that assumes the role of the neighborhood. Instead of intervals or ball-
shaped regions in IRd, ’closeness’ is here taken to be ’close in time’. Therefore,
the question about the appropriate neighborhood becomes about the size of a
sliding window, accompanying the point in time at which the prediction is to be
delivered and explained.

We organize this paper by defining BAPC for time series in Section Section 2,
illustrating it by a physical application in Section 3 and forming our conclusion
in Section 4.

2 BAPC

In this section we specialize the "Before and After prediction Parameter Com-
parison (BAPC)" framework introduced in [6] for the case of explainable time
series forecasting. Given an input real valued time series y = (yt)

n
t=1 of finite

size n ∈ IN, the BAPC consists of the following three steps:

Step-1: First application of the base model. The first step of the BAPC is
to apply a parametric base model fθ to the time series y, leading to

yt = fθ(xt) + εt, t = 1, . . . , n, (1)

where θ ∈ Rq is the estimated parameter, xt ∈ IRp is a vector of explanatory
variables and εt := yt − fθ(xt), t = 1, . . . , n, are the residuals.
Step-2: Application of the correction model. The base model chosen in
Step-1 is interpretable but lacks overall accuracy, which motivates the use of an
additional correction. Therefore, in this step, we apply a correction model ε̂ to
the residuals ε1, . . . , εn obtained in Step-1, leading to the forecast

ŷn+k := fθ(xn+k) + ε̂(xn+k), k = 1, . . . , s, (2)

where s ∈ IN is a forecast-horizon value. Up to this point, we have combined a
base model and a correction model to generate the forecast (2). The explainabil-
ity is brought in the following step.
Step-3: Second application of the base model. In this step, we take a
suitable correction-window value r ∈ IN0 and compute the modified time series
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y′ := (y′t)
n
t=1 defined as y′t = yt if 1 ≤ t ≤ n − r and y′t = yt − ε̂(xt) if n − r <

t ≤ n. We then fit again the base model fθ to y′ leading to estimated parameter
θr ∈ IRq, the explanation

∆θr := θ − θr ∈ IRq (3)

and the surrogate model fr := fθ+∆fr, where ∆fr := fθ−fθr . Strictly speaking,
one would have to call ∆fr the surrogate because it surrogates the correction ε̂.
However, fr surrogates the complete model fθ + ε̂ which is of primary interest.
Figure 1 illustrates the BAPC on a piece-wise constant time series.

Fig. 1. The BAPC applied to a piece-wise constant time series y having an even length
n and a jump of size 1 at (n/2)+1. Taking as base model a constant function fθ(t) = θ
leads to estimated parameter θ = 0.5 after step-1. At step-2 we take the 1-nearest-
neighborhood interpolation as correction model ε̂, represented by the small arrows.
Taking a correction window r = n/2 at step-3, leads to a modified piece wise constant
time series y′ having a jump of size 0.5 at (n/2)+1. Then the parameter after correction
is θr = 0.25, leading to an explanation ∆θr = 0.5 − 0.25 = 0.25 which point into the
direction of ε̂ inside the correction window.

If observations y1, y2, . . . , ym arrive consecutively over time, then it might be
of interest to apply the BAPC sequentially for each point in time using the most
resent data. We define the sequential BAPC (SBAPC) as the process of applying
BAPC to yt−n+1, . . . , yt, for t = n, . . . ,m where 1 ≤ n ≤ m is a fixed training
set size. The explanation at time t is given by

∆θtr := θt − θtr ∈ IRq (4)

where θt and θtr are the parameters obtained, respectively, after Step-1 and Step-
3 of the SBAPC at time t. The surrogate model at time t is f t

r := fθt + ∆f t
r ,

where ∆f t
r := fθt − fθt

r
. The SBAPC is illustrated in Figure 2.
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Fig. 2. The sequential-BAPC applied to a piece-wise constant step function under a
similar setting than Figure 2, namely we take the constant function as base model,
the 1-nearest-neighborhood interpolation as correction model and a correction window
r = n/2 with n even. The operation on the sliding-window shown in the first row leads
to the explanation ∆θtr shown in the second row.

3 Illustrative examples

In the accompanying presentation file we illustrate the proposed sequential-
BAPC method by analyzing 3 synthetic time series consist of a piece-wise con-
stant, a piece wise linear and harmonic oscillator with external force. Then we
provide an example on 2023 daily SP500 stock values.

4 Conclusions

We defined an extension of the BAPC method for time series based on the notion
of being able to compare the change in the model parameters of an interpretable
time series model before and after the application of a complex black box cor-
rection model. In particular, we defined the concept of sequential BAPC leading
to an explainable time series forecast for each point in time, by means of a time
dependent explanation.

The optimal choice of the correction window (locality problem in local surro-
gate modeling; see Question 3 in [11]) is our primary focus of ongoing research,
which we plan to propose in the form of a sequential BAPC with adaptive
correction-window value. The presented illustrative example provides initial in-
sights, by linking the explanation with the discovery and explanation of change
points in the data.

It is seen that BAPC is able to deliver explanations of changes in a sequence
of observations by changes of parameters associated with a law of motion if taken
as a physical model for observed time series data, linking it to physics informed
machine learning [12]. Furthermore, it is able to distinguish the parameters most
responsible for this change from others, delivering ’feature-importance’ [2] in the
sense of local surrogate modeling in explainable AI.
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