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A Life Cycle View
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Kenett, R.S. (2015) Statistics: A Life Cycle View, Quality Engineering, 27(1):111-129



The |
delivery



What is
information

guality?

statistical ;




. InfoQ dimensions
Information

Quality: 1. Data resolution InfoQ(U,f,X,g) = U(f(X]|g))

2. Data structure InfoQ components
“The potential of a

particular dataset

3. Data integration

4. Temporal relevance

to achieve a
pa rticular goal 5. Chronology of data and goal
using a given 6. Generalizability
mpirical analysis
=mp ” Y 7. Operationalization
method

8. Communication



F is the net force applied, m is the
mass of the body, and a is the
body's acceleration. The net force
applied to a body produces a
proportional acceleration.
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https://onlinelibrary.wiley.com/doi/full/10.1002/asmb.2701

Generalizability

TECHHICAL REPORT

DE GRUYTER J. Causal Infer. 2015; 3(2): 259-266

Causal, Casual and Curious

Judea Pearl*
Generalizing Experimental Findings

D01 10,1515 fjei-2015-0025

Abstract: This note examines one of the most crucial questions in causal inference: “How generalizable are
randomized clinical trials?” The question has received a formal treatment recently, using a non-parametric
sefting, and has led to a simple and general solution. [ will describe this solution and several of its
ramifications, and compare it to the way researchers have attempted to tackle the problem using the
language of ignorability. We will see that ignorability-type assumptions need to be enriched with structural
assumptions in order to capture the full spectrum of conditions that permit generalizations, and in order to
judge their plausibility in specific applications.

Keywords: generalizability, transportability, selection bias, admissibility, ignorability

1 Transportability and selection bias

The long-standing problem of generalizing experimental findings from the trial sample to the population as
a whole, also known as the problem of “sample selection-hias” [1, 2], has received renewed attention in the
past decade, as more researchers come to recognize this bias as a major threat to the validity of experi-
mental findings in both the health sciences [3] and social policy making [4]. Since participation in a
randomized trial cannot be mandated, we cannot guarantee that the study population would be the same
as the population of interest. For example, the study population may consist of volunteers, who respond to
financial and medical incentives offered by pharmacentical firms or experimental teams, so, the distribu-
tion of outcomes in the study may differ substantially from the distribution of outcomes under the policy of
interest.

c CW»

ACM
AM. TURING AWARD

JUDEA PEARL
AND DANA MACKENZIE

THE
BOOK OF
WHY

. ——

THE NEW SCIENCE
OF CAUSE AND EFFECT

ACTIVITY:
QUESTIONS:

EXAMPLES;

3. COUNTERFACTUALS

Imagining, Rerrospecnon, Understaoding

Wl & 1 iwd slowe ... 7 WWhy?
[(Was it X thas cmsed Y? What if X had noc
occareed? Whar of 1 bad acred differently?)

Wigs it the aspicen thar stopped my headache?
Wi Kenswedy be abse of Ososdd had aor
kdled hume Whatif | hud oor senoked foe the
bist 2 yexes?

ACTIVITY:

| QUESTIONS:

EXAMMES:

2, INTERVENTION

Duoing, Inreevenay

Wha & 1 & ? Flsw?

What would Y beof Tdo N?

Hom can | make ¥ basppent)
[f 1 eakie aspican, will mw hesdache be cuned?
Whar if we han agasestes?

ACTIVITY:

|
QUESTIONS:

EXAMPLES:

1. ASSOCIAITON

Seeng, Observing

Pl o e .
How are the vacubles relared?
How would secing X dwnge o belief in Y?)

What does 2 sympaom tdll me sboot 3 discaser
What does 2 servey iell us shout ghe

edevnna tesulis?

11




Causa
Mode

Peter Buhlmann

-10

10

12



Causa
Mode

Peter Buhlmann

manipulate x = —8

13



Causa
Mode

Peter Buhlmann

manipulate x = —8

14



Causa
Mode

Peter Buhlmann

10

-10

manipulate x = —8

10

15



https://sites.google.com/site/datainfoq

Information quality

« N

Chronology of  puml  Generalization

[

Data preparation

] [ Data analysis

] data and goal

|

Interpretation

] [ Communication

A 4

)

!

p

\

D 4
Data ‘
resolution

v €

Data
structure

>

»

4

<

Yes mmm=)  Communication

Operationalization

Data
integration

Temporal —> Data is not

relevance No informative

The Information Quality Workflow

16


https://sites.google.com/site/datainfoq

Journal of Intelligent Manufacturing
https://doi.org/10.1007/510845-021-01817-9

Challenges of modeling and analysis in cybermanufacturing: a review

from a machine learning and computation perspective
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Digital Twins

EDIED BY Monitoring, diagnostic, prognostic and prescriptive capabilities

RON S.KENETT IROBERTS. SWARZ | AVIGDOR ZONNENSHAIN

SYSTEMS ENGINEERING
INTHE FOURTH
INDUSTRIAL REVOLUTION

BIG DATA, NOVEL TECHNOLOGIES, AND MODERN
SYSTEMS ENGINEERING

Sensor technologies Diagnostic methods
Flexible systems Prognostic predictions
Monitoring algorithms Prescriptive optimization



Analytics in Performance Engineering
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Condition Based Maintenance (CBM)
Health and Usage Monitoring Systems (HUMS)

MTBF statistical expected life )
] Prognostics and Health Management (PHM)
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Source: Economic and Safety Benefits of Diagnostics & Prognostics (Romero et al. 1996)
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Why mathematical models ?

1. Understanding of a dynamical system

2. Examination of the effect of interventions on a dynamic
process

3. Measurement and prediction of the state of the process in
time and space

4. Enabling the development of monitoring, diagnostic and
prognostic capabilities for optimal control, condition based
maintenance and process performance certification



Uncertainty Quantification

“A further complication is that the existence of uncertainty means
that validation (comparison with reality) needs to be treated as a

statistical process.... This requirement means that there must also
be trust in the data, trust in the model, and trust in the updating

procedure.”

“Uncertainty evaluation also gives a better understanding of how
much trust can be placed in the model results”

Wright & Davidson (2020). How to tell the difference between a model and a digital twin. Advanced Modeling and
Simulation in Engineering Sciences. 7, 13.



Finite element analysis (FEM)
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Reliability modeling is an essential element in modern prognostic health management of systems and processes.! Itis part
of advances in industry 4.0 and digital twins.>* This is a discussion of the paper by Tian, Lewis-Beck, Niemi and Meeker
that provides an important contribution to Bayesian reliability applications. Specifically, the paper provides a systematic
approach to reliability analysis with a small number of failures. It consists of a comprehensive review, excellent case
studies, and covers a wide angle perspective of Bayesian analysis including applications with the rstan software, prior
distributions, sensitivity analysis, combining informative with noninformative or weakly informative prior distributions
and simulation studies. This discussion lists some peripheral add-on material that can be considered as complementary.
Specifically, the discussion covers (i) prior elicitation methods, (ii) few shot learning, and (iii) additional references to
Bayesian analysis not mentioned by the authors. The general challenge discussed by the paper of Tian et al is to model
reliability when data on failures is scarce. Bayesian analysis, that relies on prior distributions, is a working option covered
by the paper. In that context, elicitation of priors is a key necessary step. The next section discusses it.

Statistical finite elements for misspecified models

Connor Duffin®'®, Edward Cripps®®, Thomas Stemler**®, and Mark Girolami“?

aDepartment of Mathematics and Statistics, The University of Western Australia, Perth, WA 6009, Australia; "Complex Systems Group, The University of
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Register Foundation Programme for Data-Centric Engineering, The Alan Turing Institute, London NW1 2DB, United Kingdom
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We present a statistical finite element method for nonlinear, time-
dependent phenomena, illustrated in the context of nonlinear
internal waves (solitons). We take a Bayesian approach and lever-
age the finite element method to cast the statistical problem as a
nonlinear Gaussian state—space model, updating the solution, in
receipt of data, in a filtering framework. The method is applica-
le to problems across science and engineering for which finite
lement methods are appropriate. The Korteweg-de Vries equa-
ion for solitons is presented because it reflects the necessary
omplexity while being suitably familiar and succinct for peda-
ogical purposes. We present two algorithms to implement this
1ethod, based on the extended and ensemble Kalman filters,
nd demonstrate effectiveness with a simulation study and a case
tudy with experimental data. The generality of our approach
i demonstrated in S/ Appendix, where we present examples
rom additional nonlinear, time-dependent partial differential
quations (Burgers equation, Kuramoto-Sivashinsky equation).

FEM model, which represents all assumed knowledge before
observing data. The mean is the standard Galerkin solution, and
the covariance results from the action of the discretized PDE
operator on the covariance G(0); further details are contained
in ST Appendix, section 1. This was first developed in ref. 4, and
we demonstrate the generality of such an approach by extending
it to nonlinear, time-dependent PDEs.

An area in which nonlinear and time-dependent problems
are ubiquitous is ocean dynamic processes, where essentially
all problems stem from a governing system of nonlinear, time-
dependent equations (e.g., the Navier-Stokes equations). The
ocean dynamics community has grown increasingly cognizant of
the importance of accurate uncertainty quantification (5, 6), with
many possible applications [e.g., rogue waves (7), turbulent flow
(8)] for our proposed methodology.

An example process is nonlinear internal waves (solitons),
which are observed as waves of depression or elevation along a

https://www.pnas.org/doi/10.1073/pnas.2015006118 "
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Abstract
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This paper is a review of the growing role of simulations and computer experiments in
industrial statistics, with an emphasis on Industry 4.0 applications. It maps the
background, the current state, and the future directions of computer simulations in a
wide range of process engineering, product design, and analytic disciplines.
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Deep learning (DL) has been revived over the last two decades in what is considered as the third DL wave.'* This wave
began after the publication by Hinton et al."* DL algorithms learn meaningful pattern from training data by determining
how to represent the data via hierarchically meaningful features. DL algorithms successfully resolved several challenging
artificial intelligence tasks like photos and speech recognition, that until then had not been resolved successfully by other
types of algorithms.

Domain adaptation techniques are categorized by two properties: (i) what the learner tries to learn and (ii) how the
learner does it. What the algorithm tries to learn can be divided in three categories: (1) Learning invariant functions
between the source and the target domain, where the functions use invariant features of the source and the target domain
and are also successful in classifying data in the source domain. (2) Learning two different functions for the source and
the target domains where some of their properties are similar or identical. For example they can use the same features
extractor but different classifiers. (3) Learning a mapping function that maps examples from the target domain to the
source domain and learning a function that successfully classifies data in the source domain or the target domain.

How the learner learns can be categorized into four categories: (a) Minimizing distribution metrics between the
extracted features of the source and the target domain, like maximum mean discrepancy and central moment discrep-
ancy (b} Using adversarial approaches. For example, a feature extractor E learns to extract features from the source and
the target domains, and a discriminator D competes with E for learning, to find if the extracted features correspond to
an example from the source or the target domains. In parallel to that, another network learns to classify the extracted
features based on the labeled examples of the source domain. (c) Batch-normalization methods. (d) Parameter transfer
methods, where the network is first pre-trained using the source domain and then tuned with examples from the target
domain.#

Leturiondo et al.'” refer to the case of zero-fault shot learning and suggest using simulated data as the source
domain to classify unseen faults in the target. However, they did not apply their idea on measured data. Sobie et al.'®
refer to the case of zero-fault shot learning and suggest using simulated data as the source domain to classify unseen
faults in the target. In contrast to Leturiondo et al.,”* they apply their algorithms to real cases and get satisfactory
results. In their study, the signals are preprocessed by regular signal processing techniques and normalized. They
show and emphasize that simulated signals can help in fault diagnosis. When real examples are added, the diagno-
sis results become much more accurate. Their study demonstrates how simulations, with a preprocessing of signals,
can achieve zero-fault learning. These methods predict faults using DL algorithms, even in the case of very few or
no failures. In some sense they provide an alternative to the Bayesian reliability models presented in the paper under
discussion.

SIGNIFICANC=

Data and the Fourth
Industrial Revolution

Ron S. Kenett and Shirley Y. Coleman outline
the roles played by data and statistics in
“Industry 4.0, from monitoring manufacturing
processes to the building of “digital twins”

The word “manufacturing” continuous measurements
conjures images of galleries such as temperature, flow

of machines running day rate, colour and purity

and night, maybe with rows of between different parts of the
workers adjusting or sifting and production process.

sorting. What is missing from 2. Flexible manufacturing

these mental images, though, are capabilities — such as 3D

the sensors embedded in each of printing — that can efficiently
those machines, collecting data produce batches of products
continuously on different aspects of to order.

production, transmitting thatdata 3.  Data analytics, including

to analytics computer packages, statistical analysis, machine
and - attheend of itall -a learning and artificial
statistician monitoring the outputs intelligence that powers

in an effort to understand what is industry with the capability
going on and to make sure things to control and optimise

are working at their very best. processes.
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DESIGN OF EXPERIMENTS

New Frontiers
In the Design
Of Experiments

By Ron S. Kenett and David M. Steinberg

QUALITY PROGRESS

THE OFFICIAL PUBLICATION OF ASG

roduct and process development is funda- important component of industrial statistics. The
mental to long-term business survival. expanding use of computers to run experiments in
Fostering innovation and reducing time to a simulated environment has created new frontiers.

market while achieving top product performance
are crucial to survival and success.
Statistically designed experiments play an impor- Statistically designed experiments have been
tant role in achieving such objectives and are an used to accelerate learning since their introduction
by R.A. Fisher in the first half of the 20th century.

NPT 1.0 1o M T O S

Forefathers of Experimentation



From System to
Systems (SoS)



“I like to think of clinical trials in terms of the five questions one might be interested in
answering”, Senn, S. J. (2004) Controversies concerning randomization and additivity in
clinical trials. Statistics in Medicine, 23, 3729-3753.

Q1. Was there an effect of treatment in this trial?

Q2. What was the average effect of treatment in this trial? Patient = system

Q3. Was the treatment effect identical for all patients in the trial? Population = SoS

Q4. What was the effect of treatment for different subgroups of patients?

Q5. What will be the effect of treatment when used more generally?

Safety Valve
31




A Case Study
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Safety Valve
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Railway Vehicle Suspension — 4 failure states:



Railway Vehicle Suspension - Mathematical

model

Primary Suspension

F — AX frame

between axle and bogie

Secondary Suspension
between bogie and car-body
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Railway Vehicle Suspension — FEM Model

X
Product!
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Parameter Unit Value
Mass of body M. kg 90000
Mass of bogie M, kg 2980
Mass of wheelset M, kg 1350
Inertia body nod j . kg-m?> 2.446xe6
Inertia bogie nod j,; kg-m> 3605
Primary suspension stiffness K N/m 2.14xeb
Second suspension stiffness K, N/m 2.535x%eb6
Primary suspension damping C;| N-s/m 4.9%xe4
Second suspension damping C,, N-s/m 1.96xe5
Half length of the vehicle L. m 8.4
Half length of the bogie L; m 1.2
Wheel radius R m 0.451
Acceleration of gravity g m/s? 9.8
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Railway Vehicle Suspension - Monitoring
System
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—Front bogie dispacement - measured (10 km/h)
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Railway Vehicle Suspension - Model Validation

The vibration signals of the bogie obtained under normal conditions
Sensors were mounted on the bogie of the locomotive which was running at
the speed of 10 and 40 km/h

Track geometry and acceleration measurement System

Sensors mounted on the bogie

E:," f’: zrl ﬂn 3:1 va? . %‘g
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Railway Vehicle Suspension - Model Validation

* The experiments and model showed similar results

* Vehicle velocity has a significant effect on the acceleration signal

Bogie displacement Mean Square Error (MSE)
2 T T 0.025 : ‘ : :
—Front bogie dispacement - simulated (10 km/h)
L5 Rail profile - A,
—Front bogie dispacement - measured (10 km/h) = 0.02
~ 1 g 00
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E o
~ 0.5 et w——
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1
MSE = NZ(measured (i) — simulated (i))2
i=1
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Wheel Flats

 The main causes of wheel-flats are temporary or complete

wheel blocking.
 wheel-flats pose risk to the safety of the rail vehicle ride.

The vertical motion of a wheel flat:

(a) The geometry of a wheel flat;

(b) The vertical displacement response
curve

of point O. (km/h) (Hz)

/ 1 = Ve displacement response curve 10 0.96
TN 2 40 3.86
ey, E 10, 20, 30, 40, 50
’ | 70 6.76
Il > £
0 '“:10‘ , A :-E' 0
N \V 100 9.66
\ l/ 8/ / -

04 06
Time (5)




Railway Vehicle Suspension - Wheel Flat

Detection .
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Railway Vehicle Suspension - Wheel Flat
Detection

» Peak Energy Concentration PEC = i‘;‘“ Vi € Zo

PEC measures the energy percentage that is concentrated in the peaks

Normal state  Wheel Flat (10 mm) Wheel Flat (20 mm)
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Railway Vehicle Suspension - Fault diagnosis

Time-domain and frequency-domain feature parameters of 4 states

Feature parameters

Normal state

Failure of lateral damper

Wheel flat
Failure of spring

Failure of spring & damper

peak peak-peak average
value value amplitude
0.30 0.59 0.17
0.32 0.69 0.14
0.29 0.53 0.16
0.28 0.58 0.15
0.31 0.63 0.18

variance RMS skewness kurtosis

0.15

4.93

0.45
0.51

0.74

0.47

0.32

0.37
0.26

0.64

Structure parameters of deep neural network
Nodes of input

layer

16

Non-supervision
learning rate

0.1

Nodes of output | Nodes of hidden

layer

8

layer

3

Fine-adjustment learning rate under

supervision
0.01

0.87

1.13

0.77
0.43

1.21

Number of nerve

cells in hidden
layer

100

Activation
function

Sigmoid function

1.34

0.88

0.68
0.66

0.75

standard
deviation

0.39

2.22

0.67
0.46

0.84



Railway Vehicle Suspension - Fault diagnosis

;Z,;;’Z;";:; Features (16 in total) of the acceleration
Vaar:\:nac: deviation Vs
e signature are extracted in both the time
Skewne:;Iltude 7 ] ]
domain and frequency (Order) domain.
e 7 | Based on these, we can predict and classif
e Sigmoid . _ . _
o(z) = = the different faults using machine learning.
O :%_ MJ&._':} ! {;{j
“ O Structure parameters of deep neural network
Nodes of input Nodes of output | Nodes of hidden | Number of nerve
layer layer layer cells in hidden
layer
16 8 3 100
Non-supervision | Fine-adjustment learning rate under Activation
learning rate supervision function

0.1 0.01 Sigmoid function 45
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The Challenge
2021 " “New engineering practices driven by the
management of performance entail high
expectations for predicting responses of
"Moderr systems of systems that are extremely large,
Statistics extremely uncertain, extremely complex,
2022 |8 very accurately and all this in almost real-

time, for optimal decision-making.

The goal.:
Certified Performance by Design

47

Industrial
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Thank you for your attention
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