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Background

▪ Metrology is the science of measurement

▪ VSL is the National Metrology Institute (NMI) of the Netherlands, 

maintaining the highest measurement standards

▪ Cooperation within Europe:

− Euramet

− European Metrology Network (EMN) Mathmet

− EPM research projects, e.g., 22DIT01 ViDiT, “Trustworthy virtual experiments and digital twins”, 

www.vidit.ptb.de 

▪ EMN Mathmet cooperates with ENBIS:

− joint members

− joint workshops, special sessions at conferences

− ENBIS is member of the EMN Mathmet ‘Stakeholder Advisory Committee’

− ENBIS Measurement Uncertainty Special Interest Group (MU SIG) is very close to EMN Mathmet
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Virtual Experiments in metrology

▪ A software-based simulation tool: 𝑋 = 𝑔 𝑌, 𝑍   or   𝑋 = 𝑔0 𝑌, 𝑍 + 𝜖  or ...

− 𝑌... measurand (quantity to be determined)

− 𝑋... measured data, often involving repeated measurements

− 𝑍... other uncertain parameters, often unknown but fixed value (though fully random is not excluded)

− 𝜖... random measurement noise (if not included in 𝑔)

▪ It helps:

− understanding the measurement process

− analyzing the effect of error sources

− optimizing the measurement scheme

− optimizing the data analysis after the measurement

▪ Examples:

− Coordinate Measurement Machines

− Tilted Wave Interferometry, Scatterometry

− Flow (CFD) & flow meter simulations
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Uncertainty evaluation in metrology

▪ GUM suite of documents:

− Guide to the evaluation of Uncertainty in Measurement (JCGM-100): propagation of variances (‘LPU’)

− Additional documents: propagation of distributions, multivariate case, modelling, conformity assessment

▪ Main focus on measurement model: 𝑌 = 𝑓(𝑋, 𝑍)

− 𝑌... measurand (quantity to be determined)

− 𝑋... measured data, often involving repeated measurements

− 𝑍... other uncertain parameters, often unknown but fixed value

▪ Propagation of distributions (using a Monte Carlo method) is often seen as ‘gold standard’

▪ Evaluation of long-run success-rates (LSRs) in the context of a statistical model is not so common

▪ When a VE is available, it is a small step to evaluate the LSR of a data analysis method (DA)

▪ We assessed LSRs for several GUM-inspired DAs
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Scenario: Simplified Coordinate Measuring Machine (CMM)

Data X:

▪ (𝑥𝑖 , 𝑦𝑖) coordinates of 25 to 1000 measured points on a circle

Measurand and artefact related parameters Y:

▪ Measurand:

− Circle radius 𝑟

− Roundness PV-value 𝑝𝑣

▪ Auxiliary parameters:

− Circle centre (𝑥0, 𝑦0)

− Probing directions 𝜑𝑖

− Lobe parameters: 𝑛lob, 𝜑lob, 𝑎 (= 𝑝𝑣/2)

Parameters Z:

▪ Instrument parameters:

− Scale errors of x- and y-axis: 𝑠𝑥, 𝑠𝑦

− Squareness deviation between x- and y-axis: 𝛼

− Std. dev. of measurement noise 𝜎

▪ Data analysis parameters:

− Gaussian filter cut-off parameter 𝑓cut
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Classical data analysis method

▪ Goal: estimate 𝑟 and 𝑝𝑣 and their uncertainties, 

e.g., their standard deviations or 95%-coverage intervals

▪ Define measurement model 𝑌 = 𝑓(𝑋, 𝑍). Here:

1. Correct the data 𝑋 for any systematic errors

2. Filter the corrected data

3. Fit a circle to the corrected data

4. Derive 𝑟 and 𝑝𝑣 from the fit results, return 𝑌 = (𝑟, 𝑝𝑣)

▪ Uncertainty evaluation:

− Data 𝑋 have normal distribution N(𝑋, 𝑉𝑋), with covariance matrix 𝑉𝑋

− Parameters 𝑍 have a specified distribution with covariance matrix 𝑉𝑍 

− Propagate variances through model 𝑓: 𝑉𝑌 =
𝜕𝑓

𝜕𝑋
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𝑉𝑍 (LPU)

− Propagate distributions through model 𝑓: Monte Carlo method applied to 𝑌 = 𝑓(𝑋, 𝑍) (PoD)
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VE-based perturbation analysis

▪ Idea:

− Analyze how the data 𝑋 would change if the unknown, fixed value of 𝑍 changes. 

− Evaluate the perturbed data, yielding a range of `reasonable values’ for the measurand 𝑌

▪ 𝑃(𝑌) = 𝑃𝑜𝐷𝑃 𝑑𝑋noise ,𝑃 𝑍 𝑓 𝑥(real) +
𝜕𝑔 𝑋,𝑍

𝜕𝑍
|𝑥(real),𝑧(est) 𝑍 − 𝑧(est) + 𝑑𝑋noise, 𝑧(est)
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real measurement

data 𝑥(real)

VE-based perturbation (repeat)
𝜕𝑔 𝑋, 𝑍

𝜕𝑍
|𝑥(real),𝑧(est) 𝑧(j) − 𝑧(est)

Data Analysis 
(repeat)

𝑦 𝑗 = 𝑓(𝑥pert
𝑗

, 𝑧 est )

+

Measurement noise
(repeat) 

𝑑𝑥noise
(𝑗)

uncertain parameters 𝑍

estimate 𝑧(est)

samples 𝑧(j)

𝑥pert
(𝑗)

distribution for 𝑌

𝑦(est), 𝑢(𝑦 est )



VE-based uncertainty prediction

▪ Idea: A VE can be used to analyze a measurement and predict an uncertainty. (PoD-via-VE)

Steps:

1. Determine an 𝑦(sim) to be used in the VE by evaluating 𝑓(𝑥(real), 𝑧(est)) and additional parameter estimates

2. Repeatedly run the VE using different samples 𝑧(𝑗) of 𝑍 and the noise 𝜕𝑥noise
(𝑗)

related to 𝑋, resulting in 𝑥(𝑗)

3. Evaluate for each run 𝑦(𝑗) = 𝑓 𝑥 𝑗 , 𝑧 𝑗

4. Compute the quantities of interest from the 𝑦(𝑗), e.g., mean, standard deviation, 95%-coverage intervals
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distribution
for 𝑌

𝑦(est), 𝑢(𝑦 est )

Virtual Experiment
(repeat)

𝑥(j) = g(𝑦 sim , 𝑧 j )

uncertain parameters 𝑍

estimate 𝑧(est)

samples 𝑧(j)

Data Analysis
(repeat)

𝑦(j) = 𝑓(𝑥(j), 𝑧(est))

real measurement

data 𝑥(real)

Data Analysis + add. pars.

𝑦(sim) = 𝑓(𝑥(real), 𝑧(est))



Bias-corrected VE-based analysis

▪ Problem: If the model is strongly non-linear, the result of 𝑓(𝑋, 𝑍) can be biased, i.e., 𝐸(𝑓 𝑋, 𝑍 ) ≠ 𝑦true

▪ Solution idea: Add a bias correction to the generated samples 𝑦(𝑗) based on VE experiments

▪ Resulting corrected samples: 𝑦′(𝑗) = 2𝑦(sim) − 𝑦(𝑗)
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Results - distributions

▪ For a relatively smooth measurand like the radius, all methods give very similar results

▪ For a non-linear measurand like the roundness PV-value, the results are quite different
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Results – Uncertainties & Long-run success rates

▪ For radius all methods return proper estimates

▪ PV-value is overestimated by PoD (pert) and PoD (VE) resulting in 0 LSR

▪ Uncertainties are quite different

11

Uncertainty 

method

LSR 

radius

LSR 

PV-value

Target value 95 % 95 %

LPU 96 % 90 %

PoD (pert) 95 % 0 %

PoD (VE) 95 % 0 %

PoD (VE cor) 95 % 95 %

Uncertainty 

method

average of the

ො𝒓 ± 𝑼(ො𝒓) / mm

average of the

ෝ𝒑𝒗 ± 𝑼(ෝ𝒑𝒗) / mm

True value 100.018 0.100

LPU 100.018±0.016 0.115±0.027

PoD (pert) 100.018±0.016 0.125±0.021

PoD (VE) 100.018±0.016 0.134±0.017

PoD (VE cor) 100.018±0.016 0.096±0.017

(Average of 1000 runs)



Robustness w.r.t. VE artefact shape for ෝ𝒑𝒗 results

▪ Calculated uncertainties are not sensitive to exact shape used inside the VE

▪ LPU does not use an assumed shape

▪ PoD (pert) only depend on derivative of VE, which is in this case quite insensitive to artefact shape

▪ Estimating PV-value without modelling it does not work for PoD (VE) and PoD (VE cor)
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VE artefact 

model

5-lobed 

circle

10-lobed 

circle

perfect 

circle

True value 0.100 0.100 0.100

LPU 0.115±0.027 0.115±0.027 0.115±0.027

PoD (pert) 0.125±0.021 0.125±0.021 0.125±0.021

PoD (VE) 0.134±0.017 0.132±0.017 0.022±0.018

PoD (VE cor) 0.096±0.017 0.098±0.017 0.209±0.018

VE artefact 

model

5-lobed 

circle

10-lobed 

circle

perfect 

circle

Target value 95 % 95 % 95 %

LPU 90 % 90 % 90 %

PoD (pert) 0 % 0 % 0 %

PoD (VE) 0 % 0 % 0 %

PoD (VE cor) 95 % 96 % 0 %

(Average of 1000 runs)



Conclusions

▪ Virtual Experiments in metrology enable a thorough assessment of data analysis methods used

in industrial measurements

▪ Trustworthiness of some uncertainty evaluation methods is questionable in the light of long-run 

success rates calculated with the help of VEs for highly non-linear measurands

▪ Unbiased estimate depends on the value of the uncertainty, not only on the measured values and 

best estimates of the parameters. No conservative uncertainties allowed anymore!
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Appendix: Bayesian inversion

▪ Given priors 𝑃0(𝑌) and 𝑃0(𝑍) and likelihood 𝐿 𝑋; 𝑌, 𝑍 = 𝑃 𝑋 𝑌, 𝑍) ~ 𝑁(𝑔 𝑌, 𝑍 , 𝑉𝑋)

calculate posterior distribution 𝑃 𝑌, 𝑍 𝑋) ~ 𝑃 𝑋 𝑌, 𝑍)𝑃0 𝑌 𝑃0 𝑍

and marginal distribution for the measurand 𝑃 𝑌 𝑋) 

▪ Challenges:

− Linear scale errors and radius error can compensate each other, leading to unrealistic solutions

− An accurate model of the artefact shape is needed, otherwise residuals are not correctly distributed

− In a more complex VE, there may be many more uncertain parameters in 𝑍, and the Bayesian inference

problem becomes computationally prohibitely large 

− For more complex VEs involving multiple `low-level’ noise contributions, the likelihood may not have an

analytical expression, making the uncertainty evaluation quite complex
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