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Background
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Metrology is the science of measurement

VSL is the National Metrology Institute (NMI) of the Netherlands,
maintaining the highest measurement standards

Cooperation within Europe:
— Euramet
- European Metrology Network (EMN) Mathmet

- EPM research projects, e.g., 22DITO01 VIDiT, “Trustworthy virtual experiments and digital twins”,
www.vidit.ptb.de

EMN Mathmet cooperates with ENBIS:

- joint members

— joint workshops, special sessions at conferences

- ENBIS is member of the EMN Mathmet ‘Stakeholder Advisory Committee’

- ENBIS Measurement Uncertainty Special Interest Group (MU SIG) is very close to EMN Mathmet
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Virtual Experiments in metrology

= A software-based simulation tool: X=g9g,Z) o X=gyY,Z2)+€e or
- Y... measurand (quantity to be determined)
- X... measured data, often involving repeated measurements
- Z... other uncertain parameters, often unknown but fixed value (though fully random is not excluded)

- €... random measurement noise (if not included in g)

= |t helps:
— understanding the measurement process
- analyzing the effect of error sources
- optimizing the measurement scheme

- optimizing the data analysis after the measurement

= Examples:

- Coordinate Measurement Machines
Lehrstuhl Qualitdtsmanagement und

- Tilted Wave Interferometry, Scatterometry Fertigungsmesstechnik, Prof. A. Weckenmann
https://commons.wikimedia.org/wiki/File:Koordinaten
National - Flow (CFD) & flow meter simulations messsystem_in_Portalbauweise_(Animation).gif

Creative Commons Attribution-Share Alike 3.0
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Metrology

N
Uncertainty evaluation in metrology w2(3) =Y L] w2 (x,))

GUM suite of documents:
- Guide to the evaluation of Uncertainty in Measurement (JCGM-100): propagation of variances (‘LPU’)
- Additional documents: propagation of distributions, multivariate case, modelling, conformity assessment

Main focus on measurement model: Y=f(X2) gx, (&)
- Y... measurand (quantity to be determined) /\ Y — F(X) J\
- X... measured data, often involving repeated measurements 9x, (&2) gy (1)
- Z... other uncertain parameters, often unknown but fixed value |

st(fa)

Propagation of distributions (using a Monte Carlo method) is often seen as ‘gold standard’

Evaluation of long-run success-rates (LSRS) in the context of a statistical model is not so common

When a VE is available, it is a small step to evaluate the LSR of a data analysis method (DA)

We assessed LSRs for several GUM-inspired DAs
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Scenario: Simplified Coordinate Measuring Machine (CMM)

Data X:
= (x;,y;) coordinates of 25 to 1000 measured points on a circle

Measurand and artefact related parameters Y:
= Measurand:

- Circle radius r

- Roundness PV-value p,
= Auxiliary parameters:

- Circle centre (xg, o)

- Probing directions ¢;

- Lobe parameters: niop, Piob, @ (= py/2)

Parameters Z:

= |nstrument parameters:
— Scale errors of x- and y-axis: sy, s,
— Squareness deviation between x- and y-axis: «
- Std. dev. of measurement noise o

= Data analysis parameters:

— Gaussian filter cut-off parameter f.,;

« X=g(V,Z)+e

= @; = 2mi/n

= 13 =71 +sin(@iop + @i Niob)
Xtrue,i = Xo + 13 cos(¢;)

" Ytruei = Yo T T Sin(‘ﬁi)

X X €
(y)meas,i =4 (y)true,i * (E;)i

[
T Py ()
Sy ° ®
[
()
T
E+Of '\




X = perfect circle
+ Simulated coordinates

Classical data analysis method

= Goal: estimate r and p,, and their uncertainties,

y-coordinate / mm

e.g., their standard deviations or 95%-coverage intervals

= Define measurement model Y = f(X, Z). Here:

T T T T T
—-150 =100 =50 1] 50 160 150

Correct the data X for any systematic errors .
x-coordinate  mm

1
2. Filter the corrected data

3. Fit acircle to the corrected data
4

Derive r and p,, from the fit results, return Y = (r, p,,)

= Uncertainty evaluation:
— Data X have normal distribution N(X, V), with covariance matrix Vy

- Parameters Z have a specified distribution with covariance matrix V,

2 2
- Propagate variances through model f: 1 = (Z—f{) Vy + (Z—i) V, (LPU)

- Propagate distributions through model f: Monte Carlo method appliedto Y = f(X, 2) (PoD)
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518 VE-based perturbation analysis

= |dea:
- Analyze how the data X would change if the unknown, fixed value of Z changes.
- Evaluate the perturbed data, yielding a range of ‘reasonable values’ for the measurand Y

0g(X,Z2)
- P(Y) = PODP(anoise).P(Z) (f (x(real) + a—Z |x(real)’z(est) (Z - Z(eSt)) + anoise; Z(eSt))>

uncertain parameters Z
estimate z(€sV) T
samples z()

VE-based perturbation (repeat)

09(X,Z) .
S\ 4D () — ,(est)
EYVA |x(real)’z(est) (Z VA ) V
real measurement xr(){e)rt Data Analysis distribution for Y
. (real) P A > (repeat) e 'SE ”t)u |on( otr)
ata x ; () S u(y'es
y(]) — f(xpertlz(eSt)) y (y )
Measurement noise
National | (repgat)
Metrology dx(]).
Institute noise
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5518 VE-based uncertainty prediction

= |dea: A VE can be used to analyze a measurement and predict an uncertainty. (PoD-via-VE)

Steps:

1. Determine an y'™ to be used in the VE by evaluating f(x(¢2D, z(¢sY) and additional parameter estimates

Repeatedly run the VE using different samples zU) of Z and the noise axY).__ related to X, resulting in x(

2
3. Evaluate for each run yU) = f(x1),z))
4

noise

Compute the quantities of interest from the y), e.g., mean, standard deviation, 95%-coverage intervals

uncertain parameters Z
estimate z(€st)
samples z()

v

1

Data Analysis + add. pars.
y(sim) — f(x(real)’z(est))

1

Virtual Experiment
(repeat)
x0) = g(y(sim), Z(i))

1

real measurement
data x (reab

Data Analysis
(repeat)
y@ = f(xD), z(esY)

distribution
forY

y (est)l u(y (est))




\’’518 Bias-corrected VE-based analysis

= Problem: If the model is strongly non-linear, the result of (X, Z) can be biased, i.e., E(f(X,Z)) # y'rue

= Solution idea: Add a bias correction to the generated samples yU) based on VE experiments

= Resulting corrected samples: y'0) = 2yEim) — 5,0)

y(est,s) y(real) y(est) _ y(est,z)
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"RIB Results - distributions

= For arelatively smooth measurand like the radius, all methods give very similar results

= For a non-linear measurand like the roundness PV-value, the results are quite different

— | PU

Pol {pert)
— PoD {VE)
= PoD {VE cor)
=== True value

— |PL

PoD {pert)
— PoD {VE)
= PoD {VE cor)
=== True value

Radius / mm
Metrology

! !
100.06 100.08
Peak to valley / mm

0.15 0.18 0.20




= For radius all methods return proper estimates

= PV-value is overestimated by PoD (pert) and PoD (VE) resulting in 0 LSR

= Uncertainties are quite different

'’5518 Results — Uncertainties & Long-run success rates

Uncertainty

average of the

average of the

method r+uu@/mm p,xU{@,) / mm
True value 100.018 0.100
LPU 100.018£0.016 0.115+0.027
PoD (pert) 100.0180.016 0.125+0.021
PoD (VE) 100.0180.016 0.134+0.017
PoD (VE cor) 100.0180.016 0.0960.017

Uncertainty LSR LSR
method radius PV-value
Target value 95 % 95 %
LPU 96 % 90 %
PoD (pert) 95 % 0%
PoD (VE) 95 % 0%
PoD (VE cor) 95 % 95 %
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(Average of 1000 runs)



\''518 Robustness w.r.t. VE artefact shape for p,, results

= Calculated uncertainties are not sensitive to exact shape used inside the VE

= LPU does not use an assumed shape

= PoD (pert) only depend on derivative of VE, which is in this case quite insensitive to artefact shape
= Estimating PV-value without modelling it does not work for PoD (VE) and PoD (VE cor)

VE artefact 5-lobed 10-lobed perfect VE artefact 5-lobed 10-lobed perfect
model circle circle circle model circle circle circle
True value 0.100 0.100 0.100 Target value 95 % 95 9% 95 9
LPU 0.115+0.027 0.115+0.027 0.115+0.027 LPU 90 % 90 % 90 %
PoD (pert) 0.125%0.021 0.125+0.021 0.125+0.021 PoD (pert) 0 % 0 % 0 %
PoD (VE)  0.134+0.017 0.132+0.017 0.022+0.018 PoD (VE) 0 % 0 % 0 %
PoD (VE cor) 0.096+0.017 0.098+0.017 0.209+£0.018 PoD (VE cor) 95 % 96 % 0 %

(Average of 1000 runs)
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Conclusions

= Virtual Experiments in metrology enable a thorough assessment of data analysis methods used
in industrial measurements

= Trustworthiness of some uncertainty evaluation methods is questionable in the light of long-run
success rates calculated with the help of VEs for highly non-linear measurands

= Unbiased estimate depends on the value of the uncertainty, not only on the measured values and
best estimates of the parameters. No conservative uncertainties allowed anymore!
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'&18 Appendix: Bayesian inversion -

AN e parfect circle
+ Simulated coordinates

—25

y-coordinate / mm
(=]

-100

= Given priors Py(Y) and Py(Z) and likelihood LIX;Y,Z) =P(X|Y,Z) ~N(g(Y,2),Vy) = = Frbuent = =

calculate posterior distribution PY,Z|X)~P(X|Y,Z)Py,(Y)Py(Z)
and marginal distribution for the measurand P(Y | X)

= Challenges:
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Linear scale errors and radius error can compensate each other, leading to unrealistic solutions
An accurate model of the artefact shape is needed, otherwise residuals are not correctly distributed

In a more complex VE, there may be many more uncertain parameters in Z, and the Bayesian inference
problem becomes computationally prohibitely large

For more complex VEs involving multiple “low-level’ noise contributions, the likelihood may not have an
analytical expression, making the uncertainty evaluation quite complex
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