

National
 Metrology Institute

Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or
EURAMT Neither the European Union nor the granting EURAMET. Neither the European Union nor the granting authority can be held responsible for them.
The project has received funding from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States

On the trustworthiness

of simulation-based uncertainty evaluations

for industrial measurement instruments

like CMMs

ENBIS Spring meeting "Trustworthy Industrial Data Science"

Dortmund, 15 May 2024

Gertjan Kok \& Marcel van Dijk, VSL, the Netherlands Manuel Marschall, PTB, Germany

- Metrology is the science of measurement
- VSL is the National Metrology Institute (NMI) of the Netherlands, maintaining the highest measurement standards
- Cooperation within Europe:
- Euramet
- European Metrology Network (EMN) Mathmet
- EPM research projects, e.g., 22DIT01 ViDiT, "Trustworthy virtual experiments and digital twins", www.vidit.ptb.de

- EMN Mathmet cooperates with ENBIS:
- joint members
- joint workshops, special sessions at conferences
- ENBIS is member of the EMN Mathmet 'Stakeholder Advisory Committee’
- ENBIS Measurement Uncertainty Special Interest Group (MU SIG) is very close to EMN Mathmet

民そう．
 VSL Virtual Experiments in metrology

－A software－based simulation tool：

$$
X=g(Y, Z)
$$

or $\quad X=g_{0}(Y, Z)+\epsilon$
or ．．．
－$\quad Y$ ．．．measurand（quantity to be determined）
－X．．．measured data，often involving repeated measurements
－Z．．．other uncertain parameters，often unknown but fixed value（though fully random is not excluded）
－$\epsilon \ldots$ random measurement noise（if not included in g ）
－It helps：
－understanding the measurement process
－analyzing the effect of error sources
－optimizing the measurement scheme
－optimizing the data analysis after the measurement
－Examples：
－Coordinate Measurement Machines
－Tilted Wave Interferometry，Scatterometry

Lehrstuhl Qualitätsmanagement und Fertigungsmesstechnik，Prof．A．Weckenmann https：／／commons．wikimedia．org／wiki／File：Koordinaten messsystem＿in＿Portalbauweise＿（Animation）．gif Creative Commons Attribution－Share Alike 3.0 Unported license．

VSL Uncertainty evaluation in metrology

$$
u_{\mathrm{c}}^{2}(y)=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}\left(x_{i}\right)
$$

- GUM suite of documents:
- Guide to the evaluation of Uncertainty in Measurement (JCGM-100): propagation of variances ('LPU')
- Additional documents: propagation of distributions, multivariate case, modelling, conformity assessment
- Main focus on measurement model:

$$
Y=f(X, Z)
$$

- $\quad Y \ldots$ measurand (quantity to be determined)
- X... measured data, often involving repeated measurements
- Z... other uncertain parameters, often unknown but fixed value

- Propagation of distributions (using a Monte Carlo method) is often seen as 'gold standard'
- Evaluation of long-run success-rates (LSRs) in the context of a statistical model is not so common
- When a VE is available, it is a small step to evaluate the LSR of a data analysis method (DA)
- We assessed LSRs for several GUM-inspired DAs

VSL Scenario: Simplified Coordinate Measuring Machine (CMM)

Data X :

- $\left(x_{i}, y_{i}\right)$ coordinates of 25 to 1000 measured points on a circle

Measurand and artefact related parameters Y :

- Measurand:
- Circle radius r
- Roundness PV-value p_{v}
- Auxiliary parameters:
- Circle centre $\left(x_{0}, y_{0}\right)$
- Probing directions φ_{i}
- Lobe parameters: $n_{\mathrm{lob}}, \varphi_{\mathrm{lob}}, a\left(=p_{v} / 2\right)$

Parameters Z:

- Instrument parameters:
- Scale errors of x - and y -axis: s_{x}, s_{y}
- Squareness deviation between x - and y-axis: α
- Std. dev. of measurement noise σ
- Data analysis parameters:
- Gaussian filter cut-off parameter $f_{\text {cut }}$
- $X=g(Y, Z)+\epsilon$
- $\varphi_{i}=2 \pi i / n$
- $r_{i}=r+\sin \left(\varphi_{\mathrm{lob}}+\varphi_{i} n_{\mathrm{lob}}\right)$
- $x_{\text {true }, i}=x_{0}+r_{i} \cos \left(\varphi_{i}\right)$
- $y_{\text {true }, i}=y_{0}+r_{i} \sin \left(\varphi_{i}\right)$
- $\binom{x}{y}_{\text {meas }, i}=A\binom{x}{y}_{\text {true }, i}+\binom{\epsilon_{x}}{\epsilon_{y}}_{i}$

VSL Classical data analysis method

- Goal: estimate r and p_{v} and their uncertainties,
e.g., their standard deviations or 95%-coverage intervals
- Define measurement model $Y=f(X, Z)$. Here:

1. Correct the data X for any systematic errors

2. Filter the corrected data
3. Fit a circle to the corrected data
4. Derive r and p_{v} from the fit results, return $Y=\left(r, p_{v}\right)$

- Uncertainty evaluation:
- Data X have normal distribution $\mathrm{N}\left(X, V_{X}\right)$, with covariance matrix V_{X}
- Parameters Z have a specified distribution with covariance matrix V_{Z}
- Propagate variances through model $f: \quad V_{Y}=\left(\frac{\partial f}{\partial X}\right)^{2} V_{X}+\left(\frac{\partial f}{\partial Z}\right)^{2} V_{Z} \quad$ (LPU)
- Propagate distributions through model f : Monte Carlo method applied to $Y=f(X, Z) \quad$ (PoD)

vSL VE-based perturbation analysis

- Idea:
- Analyze how the data X would change if the unknown, fixed value of Z changes.
- Evaluate the perturbed data, yielding a range of 'reasonable values' for the measurand Y
- $P(Y)=P o D_{P\left(d X_{\text {noise })}, P(Z)\right.}\left(f\left(x^{(\text {real })}+\left.\frac{\partial g(X, Z)}{\partial Z}\right|_{x^{\text {(real) })}, Z^{(\text {est })}}\left(Z-z^{(\text {est })}\right)+d X_{\text {noise }} Z^{(\text {est })}\right)\right)$

VSL VE-based uncertainty prediction

- Idea: A VE can be used to analyze a measurement and predict an uncertainty. (PoD-via-VE)

Steps:

1. Determine an $y^{(\operatorname{sim})}$ to be used in the VE by evaluating $f\left(x^{\left.(\text {real }), z^{(\text {est })}\right) \text { and additional parameter estimates }}\right.$
2. Repeatedly run the VE using different samples $z^{(j)}$ of Z and the noise $\partial x_{\text {noise }}^{(j)}$ related to X, resulting in $x^{(j)}$
3. Evaluate for each run $y^{(j)}=f\left(x^{(j)}, z^{(j)}\right)$
4. Compute the quantities of interest from the $y^{(j)}$, e.g., mean, standard deviation, 95%-coverage intervals

VSL Bias-corrected VE-based analysis

- Problem:
- Solution idea:

If the model is strongly non-linear, the result of $f(X, Z)$ can be biased, i.e., $E(f(X, Z)) \neq y^{\text {true }}$

Add a bias correction to the generated samples $y^{(j)}$ based on VE experiments

- Resulting corrected samples: $\quad y^{\prime(j)}=2 y^{(\text {sim })}-y^{(j)}$

VSL Results - distributions

- For a relatively smooth measurand like the radius, all methods give very similar results
- For a non-linear measurand like the roundness PV-value, the results are quite different

VSL Results - Uncertainties \& Long-run success rates

- For radius all methods return proper estimates
- PV-value is overestimated by PoD (pert) and PoD (VE) resulting in 0 LSR
- Uncertainties are quite different

| Uncertainty
 method | average of the
 $\hat{\boldsymbol{r}} \pm \boldsymbol{U}(\hat{\boldsymbol{r}}) / \mathbf{m m}$ | average of the
 $\widehat{\boldsymbol{p}}_{\boldsymbol{v}} \pm \boldsymbol{U}\left(\hat{\boldsymbol{p}}_{\boldsymbol{v}}\right) / \mathbf{m m}$ | | Uncertainty
 method | LSR
 radius | LSR
 PV-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| True value | 100.018 | 0.100 | | Target value | 95% | 95% |
| LPU | 100.018 ± 0.016 | 0.115 ± 0.027 | | LPU | 96% | 90% |
| PoD (pert) | 100.018 ± 0.016 | 0.125 ± 0.021 | | PoD (pert) | 95% | 0% |
| PoD (VE) | 100.018 ± 0.016 | 0.134 ± 0.017 | | PoD (VE) | 95% | 0% |
| PoD (VE cor) | 100.018 ± 0.016 | 0.096 ± 0.017 | | PoD (VE cor) | 95% | 95% |

(Average of 1000 runs)

VSL Robustness w.r.t. VE artefact shape for $\hat{\boldsymbol{p}}_{v}$ results

- Calculated uncertainties are not sensitive to exact shape used inside the VE
- LPU does not use an assumed shape
- PoD (pert) only depend on derivative of VE, which is in this case quite insensitive to artefact shape
- Estimating PV-value without modelling it does not work for PoD (VE) and PoD (VE cor)

VE artefact model	5-lobed circle	10-lobed circle	perfect circle
True value	0.100	0.100	0.100
LPU	0.115 ± 0.027	0.115 ± 0.027	0.115 ± 0.027
PoD (pert)	0.125 ± 0.021	0.125 ± 0.021	0.125 ± 0.021
PoD (VE)	0.134 ± 0.017	0.132 ± 0.017	0.022 ± 0.018
PoD (VE cor)	0.096 ± 0.017	0.098 ± 0.017	0.209 ± 0.018

VE artefact model	5-lobed circle	10-Iobed circle	perfect circle
Target value	95%	95%	95%
LPU	90%	90%	90%
PoD (pert)	0%	0%	0%
PoD (VE)	0%	0%	0%
PoD (VE cor)	95%	96%	0%

(Average of 1000 runs)

VSL Conclusions

- Virtual Experiments in metrology enable a thorough assessment of data analysis methods used in industrial measurements
- Trustworthiness of some uncertainty evaluation methods is questionable in the light of long-run success rates calculated with the help of VEs for highly non-linear measurands
- Unbiased estimate depends on the value of the uncertainty, not only on the measured values and best estimates of the parameters. No conservative uncertainties allowed anymore!

vSL Appendix: Bayesian inversion

- Given priors $P_{0}(Y)$ and $P_{0}(Z)$ and likelihood calculate posterior distribution and marginal distribution for the measurand

$$
L(X ; Y, Z)=P(X \mid Y, Z) \sim N\left(g(Y, Z), V_{X}\right)
$$

$$
P(Y, Z \mid X) \sim P(X \mid Y, Z) P_{0}(Y) P_{0}(Z)
$$

$$
P(Y \mid X)
$$

- Challenges:
- Linear scale errors and radius error can compensate each other, leading to unrealistic solutions
- An accurate model of the artefact shape is needed, otherwise residuals are not correctly distributed
- In a more complex VE, there may be many more uncertain parameters in Z, and the Bayesian inference problem becomes computationally prohibitely large
- For more complex VEs involving multiple `low-level' noise contributions, the likelihood may not have an analytical expression, making the uncertainty evaluation quite complex

