
TRAINING GRADIENT BOOSTED 
DECISION TREES ON TABULAR 
DATA CONTAINING LABEL NOISE 
FOR CLASSIFICATION TASKS

16.05.2024 ANITA EISENBÜRGER, PROF. FRANK HOPFGARTNER,  PROF. ANSELM HUDDE, DR. DANIEL OTTEN

ANITA EISENBÜRGER, PROF. FRANK HOPFGARTNER,  PROF. ANSELM HUDDE, DR. DANIEL OTTEN



Agenda

16.05.2024TRAINING GRADIENT BOOSTED DECISION TREES ON TABULAR DATA CONTAINING LABEL NOISE SEITE 2

TRAINING GRADIENT BOOSTED DECISION TREES ON TABULAR DATA CONTAINING LABEL NOISE

1.

2.

3.

4.

5.

6.

Motivation

Related Work & Preliminaries

Research Goals & Scope

Methodology

Experiments

Conclusion



16.05.2024TRAINING GRADIENT BOOSTED DECISION TREES ON TABULAR DATA CONTAINING LABEL NOISE SEITE 3

1.

Motivation



Problem Statement

●Getting labeled data is time-consuming and expensive [1] 

●What if the few labels available are unreliable?

16.05.2024TRAINING GRADIENT BOOSTED DECISION TREES ON TABULAR DATA CONTAINING LABEL NOISE SEITE 4

MOTIVATION



Label noise is the presence of incorrect labels 

in a dataset [1].
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MOTIVATION



Consequences of Label Noise
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MOTIVATION

●Decrease in model performance

● Increase in model complexity

● Increases the amount of data required for training

●Biases model comparison 

[2] 
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2.

Related Work & Preliminaries



●Data cleansing: Modify the dataset 𝐷

oRemove or relabel mislabeled instances

●Robust models: Use robust models 𝑓 or loss functions 𝐿

●Tolerant algorithms: Adapt the objective

oRegularize the model

oModel the label noise
[2]

Approaches in Dealing with Label Noise
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RELATED WORK & PRELIMINARIES



●Deep neural networks (DNNs) [3]

●Text and image classification [3]

●Small loss trick [1]

Current Landscape of Label Noise Research
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RELATED WORK & PRELIMINARIES



●Tabular data is a frequently used data format [8]

●State-of-the-art for tabular data [7]

Gradient-Boosted Decision Trees (GBDTs)
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RELATED WORK & PRELIMINARIES



●Approximate 𝑦 with the sum of multiple weak learners

𝑓𝑡 𝑥 = 𝑓𝑡−1 𝑥 +  𝜂 ∙ 𝑚𝑡(𝑥)

●Each trying to correct the errors of its predecessor, e.g. the 

residual error [9]

𝑚𝑡 𝑥 = 𝑦 − 𝑓𝑡−1(𝑥)

Boosting
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RELATED WORK & PRELIMINARIES



●Gradient Boosting: Fit the negative gradient of the predecessor 

●Example: Mean squared error

𝐿𝑀𝑆𝐸 𝑥𝑖 , 𝑦𝑖 , 𝑓𝑡 =
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝑓𝑡 𝑥𝑖
2

𝑔𝑡 𝑥𝑖 , 𝑦𝑖 =
𝜕𝐿𝑀𝑆𝐸

𝜕𝑓𝑡 𝑥𝑖
= −

2

𝑁
𝑦𝑖 − 𝑓𝑡 𝑥𝑖

●Shallow decision trees as weak learners

Gradient Boosting & GBDTs
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RELATED WORK & PRELIMINARIES



●Boosting algorithms are sensitive to label noise [11]

oOvercorrect for mislabeled instances

●Calculate training dynamics statistics to identify mislabeled 

instances [3]

GBDTs and Label Noise
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RELATED WORK & PRELIMINARIES
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3.

Research Goals & Scope



●Explore the effects of label noise on GBDTs

●Adapt GBDTs to be more robust to label noise

Research Goals
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RESEARCH GOALS & SCOPE



●Data cleansing (removing and relabeling)

●Tabular data

●Classification tasks

Scope
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RESEARCH GOALS & SCOPE
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4.

Methodology



●Apply two state-of-the data cleansing methods from deep 

learning to GBDTs

●Combine all noise detection methods with removal and 

relabeling

Methodology
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METHODOLOGY



●Likelihood Ratio Testing Correction (LRT) [12]:

𝐿𝑅 𝑓, 𝑥, ෤𝑦 =
𝑓෤𝑦(𝑥)

𝑓ො𝑦(𝑥)
, ෤𝑦𝑛𝑒𝑤 = ቊ

ො𝑦, if 𝐿𝑅 𝑓, 𝑥, ෤𝑦 < 𝜀 
෤𝑦,  otherwise

Deep Learning Methods
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METHODOLOGY



●Area under the Margin Ranking (AUM) [13]:

𝑀𝑇 𝑥, ෤𝑦 = 𝑧 ෤𝑦
𝑡 𝑥 − max

𝑖≠ ෤𝑦
𝑧𝑖

𝑡 𝑥 , 𝐴𝑈𝑀 𝑥, ෤𝑦 =
1

𝑇
෍

𝑡=1

𝑇

𝑀𝑇 𝑥, ෤𝑦

  where 𝑧 is the logit

Deep Learning Methods

16.05.2024TRAINING GRADIENT BOOSTED DECISION TREES ON TABULAR DATA CONTAINING LABEL NOISE SEITE 20

METHODOLOGY



●Confidence μ 𝑥𝑖 =
1

𝑇
σ𝑡=1

𝑇 𝑝𝑡( ෤𝑦𝑖|𝑥𝑖)

●Correctness 𝛾 𝑥𝑖 =
1

𝑇
σ𝑡=1

𝑇 ො𝑦𝑖 = ෤𝑦𝑖

●μ 𝑥𝑖 ∙ 𝛾 𝑥𝑖 < 𝜀 is predicted as noisy
[3]

Training Dynamics Statistics (ConfCorr)
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METHODOLOGY



●Remove an instance marked as noisy

●Relabel an instance marked as noisy

oMost frequent prediction across all epochs

Noise Correction Methods
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METHODOLOGY



Datasets

Dataset # Instances # Features # Classes Data Types

Dry Bean [15] 13611 16 7 Numeric

Census [16] 48842 14 2 Mixed
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METHODOLOGY

●Assumed to be clean due to the data collection process

●Polluted with label noise



Noise Injection
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METHODOLOGY



Types of Label Noise
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METHODOLOGY

tr
u

e
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la
s
s

new class

Noise transition matrices
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5.

Experiments



Effects of label noise on GBDTs:

●How does label noise affect GBDTs throughout the training 

process?

●How do the two noise types affect GBDTs differently?

Research Questions (1)
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EXPERIMENTS
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Performance of noise detection and correction methods:

●How well do the detection methods perform?

●Which correction method performs better?

Research Questions (2)
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EXPERIMENTS
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pair noise

Dry Bean dataset Census dataset
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test set, pair noise, conf_corr metric

Dry Bean, 0% Dry Bean, 5% Census, 25%
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6.

Conclusion



●GBDTs are robust to label noise

omore to symmetric label noise

●They slowly adapt to the noisy labels during training

●Use early stopping to avoid overfitting

Research Questions (1)
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CONCLUSION



●Noise detection and correction methods perform equally well

oOptimal combination depends on the dataset and amount of 

noise

●Only correct for noise above a certain noise rate

Research Questions (2)
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CONCLUSION



● Investigated effects of label noise on GBDTs 

oand offered practical advice

● Implemented methods to make GBDTs more robust to noise

oAdapted label noise detection methods from DNNs to GBDTs

oExpanded ConfCorr to work with relabeling

Contributions
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CONCLUSION



●Estimate the amount of noise present in the data

●Explore different relabeling techniques

●Account for class imbalance

Future Work
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CONCLUSION
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Thank You
You may now ask questions.
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B

Supplemental Material



● Given the dataset 𝐷 = 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁 ∈ X, Y 𝑁

● Find a function 𝑓𝜃: 𝑋 → 𝑌 with parameters 𝜃

● Evaluate using a loss function 𝐿: 𝑌 ×  𝑌 → ℝ 

o e.g. squared loss 𝐿 𝑓𝜃 𝑥 , 𝑦 = (𝑦 − 𝑓𝜃 𝑥 )2 

● Optimize to find the optimal parameters 𝜃

𝜃∗ = argmin
𝜃

1

𝑁
෍

𝑖=1

𝑁

𝐿(𝑓𝜃 𝑥𝑖 , 𝑦𝑖)

Supervised Learning
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RELATED WORK & PRELIMINARIES



●Datasets 𝐷 contains noisy labels ෤𝑦, 𝐷 = 𝑥1, ෤𝑦1 , … , 𝑥𝑁, ෤𝑦𝑁

●𝐿 𝑓 𝑥 , ෤𝑦  is optimized instead of 𝐿 𝑓 𝑥 , 𝑦

●Resulting parameters ෨𝜃∗differ from the desired parameters 𝜃∗

[1][2]

Learning with Noisy Labels
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RELATED WORK & PRELIMINARIES



● Gradient Boosting: Fit the negative gradient of the predecessor 

𝑚𝑡 𝑥 = −𝑔𝑡−1 𝑥, 𝑦

𝑓𝑡 𝑥 = 𝑓𝑡−1 +  𝜂 ∙ −𝑔𝑡−1 𝑥, 𝑦

𝑔𝑡 𝑥, 𝑦 =
𝜕𝐿(𝑓𝑡 𝑥 , 𝑦)

𝜕𝑓𝑡 𝑥

● Shallow decision trees as weak learners
[9]

Gradient Boosting & GBDTs
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RELATED WORK & PRELIMINARIES



Types of Label Noise

● Modeled with a noise transition matrix 𝑆𝑖𝑗 = 𝑝 ෤𝑦 = j y = i), S ∈ [0, 1]𝑐×𝑐

● Symmetric noise: true label is flipped to other labels with equal probability

● Asymetric noise: true label is more likely to be flipped to a certain label than 

others

● Pair noise: true label is more likely to be flipped to one particular label

● Instance-dependent noise: true label is more likely to be flipped in certain 

regions of the feature space and to certain labels
[1][2]
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SUPPLEMENTAL MATERIAL



Datasets

Method Advantages Disadvantages

Robust
No further considerations 

needed

Ineffective with more complex 

label noise or data

Tolerant More grounded in theory
Assumptions about noise 

model limit applicability

Data Cleansing Tackle the problem at the root
Overcleansing, error 

accumulation
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SUPPLEMENTAL MATERIAL

[2]



Datasets

● Preprocessing

o Impute missing data with median or mode

o Standardize numeric attributes

o One-hot encode categorical attributes

o Discard features leaking information about target

● Added up to 60% label noise to the training set

● Test set remained clean
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SUPPLEMENTAL MATERIAL



Experiment Conditions

● Pair and symmetric noise from 0%-60%

o 10%-40% for performance comparison

● XGBoost library, default model parameters

● Early stopping

o Deactivated for some research questions

● No noise correction in the exploratory phase
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SUPPLEMENTAL MATERIAL



Future Work

●Other relabeling methods

●Use noise detection methods more effectively, e.g. regularization

●Take class imbalance into consideration

●DNNs on tabular data with label noise
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SUPPLEMENTAL MATERIAL
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Census dataset, 20% pair noise
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Census dataset, pair noise
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- class balance
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- class balance
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- th method
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- th method
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- th method
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●A fixed threshold

●The instances with the top 𝑥% noise values

●Fit a 2-component Gaussian Mixture Model (GMM)

Thresholding Methods
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METHODOLOGY



●Remove an instance marked as noisy

oNo more than 80% of the instances in the training set can be 

removed

oRetain excess instances if too many were marked

●Relabel an instance marked as noisy

oMost frequent prediction across all epochs

Noise Correction Methods
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METHODOLOGY



16.05.2024TRAINING GRADIENT BOOSTED DECISION TREES ON TABULAR DATA CONTAINING LABEL NOISE SEITE 69

- metric - auc
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