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Alzheimer’s Disease
Motivation

Alzheimer’s Disease (AD)

Most frequent cause of dementia [1]

Neurodegeneration starts decades before dementia symptoms occur

At time of diagnosis, many neurons are irreversibly degenerated

No cure, only reduction of symptoms [2]

Early detection important but complex due to heterogenous disease profiles
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Alzheimer’s Disease
Motivation

Motivation

Machine Learning (ML) to identify complex patterns in high-dimensional data

Identifying complex patterns that improve the early prediction of AD

Complex underlying systems require complex models

Interpretable ML (IML) to explain decisions of black-box models and validated biological
plausibility
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Research Approach

1. Train ML and Deep-Learning (DL) models to predict AD.

2. Check generalizability during internal and external validation.

3. Use interpretability methods to explain black-box models.

4. Compare explanations of ML- and DL- models to each other.

5. Validate biological plausability of explanations with a ground-truth Voxel-Based
Morphometry (VBM) [3].
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Data

Table 1: Demographic data, and MRI field strength of the selected subjects, separated by diagnosis groups. For continuous features,
mean and standard deviation are given.

Diagnosis n Age (years) Females (%) 1.5 T (%) 3 T (%)
ADNI [4] (for training and internal validation)

CN 512 74.20 ± 5.82 51.76 44.00 56.00
AD 335 74.95 ± 7.74 44.78 57.00 43.00
Σ 847 74.50 ± 6.66 49.00 49.00 51.00

AIBL [5] (for external validation)
CN 446 72.53 ± 6.14 56.95 19.06 80.94
AD 71 73.26 ± 7.88 59.15 16.90 83.10
Σ 517 72.63 ± 6.41 57.25 18.76 81.24

OASIS [6] (for external validation)
CN 704 68.35 ± 9.27 58.66 12.36 87.64
AD 198 75.62 ± 7.92 48.48 10.61 89.39
Σ 902 69.94 ± 9.48 56.43 11.97 88.03
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Feature Extraction

Classical ML models:

▶ Volumes of brain-regions extracted
from Magnetic-Resonance-Imaging
(MRI) scans

▶ Normalized by estimated Total
Intracranial Volume (eTIV)

Deep-Learning models:

▶ Convolutional Neural Networks
(CNNs) trained on skull-stripped
3D-MRI scans Figure 1: T1-weighted MRI-scan segmented by FreeSurfer v6.0.

Adapted from: [7].
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Model Training

ADNI dataset split in 80 % training and 20 % independent test set (stratified)

Hyperparameter tuning: Grid-search including 5-fold-cross-validation (CV)

Interpretable-by-design: Decision Trees (DTs), Logisitic Regression (LR)

Black-Box: Support Vector Machines (SVMs) [8], Random Forest (RF) [9] , eXtreme
Gradient Boosting (XGBoost) [10], Light Gradient Boosting (LightGBM) [11]

Deep Learning (CNNs): DenseNet [12], EfficientNet-B0 [13], Squeeze and Excitation (SE)
[14]-ResNet [15], and -ResNeXt [16]

Platt scaling [17] for model calibration
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Interpretability Methods

Highly correlated features are consolidated into aspects [18]

All models: SHapley Additive exPlanations (SHAP) [19], Local Interpretable
Model-Agnostic Explanations (LIME) [20]

Classical ML: Permutation-based feature importance

Deep Learning: Gradient-weighted Class Activation Mapping (GradCAM) [21],
GradCAM++ [22]

Deep Learning explanations summarized for regions
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Internal and External Validation
Explain Model Decisions
Comparison to Biologically Plausible Ground Truth

Internal and External Validation
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Figure 2: Plot showing performance of the trained ML and DL
models.

Performance of models that are
interpretable-by-design show strong
differences (performance of DT weak,
performance of LR fair)

Performance of DL models does not
outperform classical ML models

AIBL performances acceptable
(generalizability for DL models worse
than for classical ML)

OASIS results acceptable but worse than
remaining performances
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Explain Classical ML Model Decisions

Figure 3: SHapley Additive exPlanations (SHAP) [19] waterfall
plot to explain individual decision of a subject with AD for
LightGBM model.

Explain the differences of the individual
prediction (f (x) = 0.414) and the
average model prediction
(E (f (x)) = 0.885) using the model input
features

Feature expressions that increase the AD
risk (aspect 27, aspect 24)

Other feature expressions have a
protective influence (aspect 17).
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Explain DL Model Decisions

small activation high activation

Figure 4: Heatmap showing GradCAM++ results to explain individual decision of a subject with AD for the DenseNet model. Source:
[23]
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Voxel-based-Morphometry Analysis

0 1

Figure 5: VBM analysis results visualize ground-truth relevant brain regions of a subject with AD. Source: [23]
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Comparison to Biologically Plausible Ground Truth

Figure 6: Polar plot to compare classical ML model explanations
to VBM ground truth.

Figure 7: Polar plot to compare Deep-Learning-Model
explanations to VBM ground truth.
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Future Work

Check why the localization of the Deep-Learning model explanations is rather unfocused
(new information vs. overfitting / underfitting)

Validation on clinically more relevant research questions (e.g., Mild cognitive impaired
subjects, Amyloid-β-positivity, Tau-positivity)

Use of multimodal input features
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Closing

Many thanks for your attention!

Please do not hesitate to approach us, given you have any questions!
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