
Benchmarking Trust: A Metric for Trustworthy Machine Learning

Jérôme Rutinowski, TU Dortmund University

05/16/2024

TRUSTWORTHY MACHINE LEARNING

THE CONTEXT

TRUSTWORTHY MACHINE LEARNING

WHAT IS TRUST?

- Neglected
- Contentious
- Political
- Subjective
- Ambiguous
- **▶** Undefined?

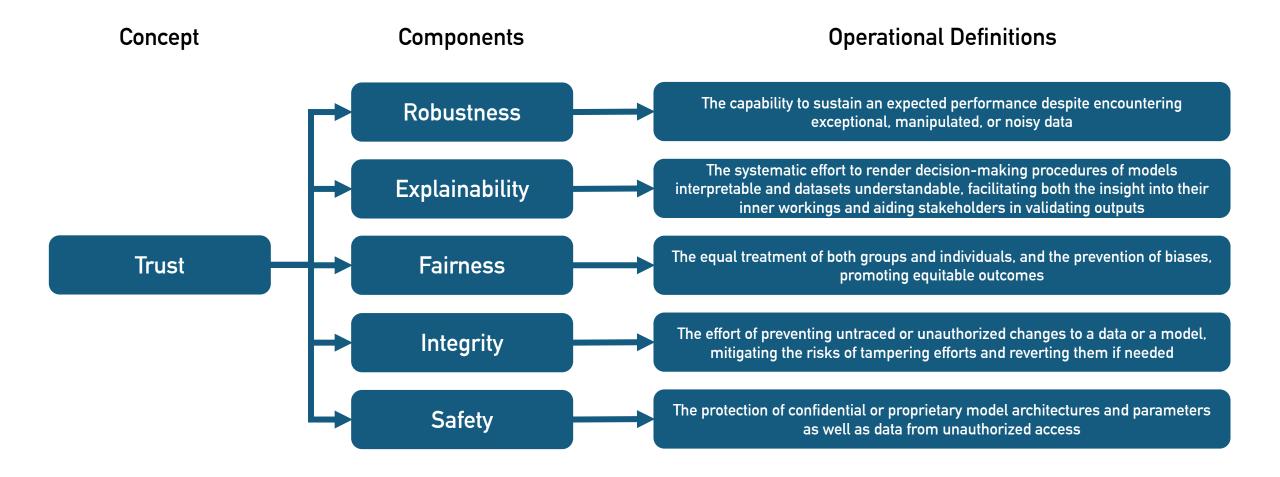
DUKEMTMC – Duke University Multi-Target Multi-Camera Tracking Dataset

AN EXEMPLARY DATASET?

- ▶ 14 hours and 2 million frames of surveillance video
- 8 cameras @ 1080p and 60FPS
- 2,000 students
- Published in 2016 @ ECCV
- Cited 2.875 times
- ▶ 2019 Financial Times Investigation → dataset retracted

EXISTING LITERATURE ON TRUST

DEFINITIONS & MEASURES OF QUANTIFICATION


- Papers defining one specific aspect of trust
- Papers quantifying an aspect of trust in a non-agnostic manner
- **Contradictory definitions**
- Ambiguous terminology: explainability VS transparency VS intelligibility VS comprehensibility VS interpretability

Benchmarking Trust: A Metric for Trustworthy Machine Learning

OPERATIONALIZATION OF A CONCEPT

DEDUCTIVE CATEGORY FORMATION

OPERATIONALIZATION OF A CONCEPT

DEDUCTIVE CATEGORY FORMATION

The concept of trust in machine learning comprises the fair use of data, robust performance when encountering anomalous data, the assurance of data and model integrity, the provision of explainable decisions as well as the safe use of confidential information.

FAILURE MODE & EFFECT ANALYSIS

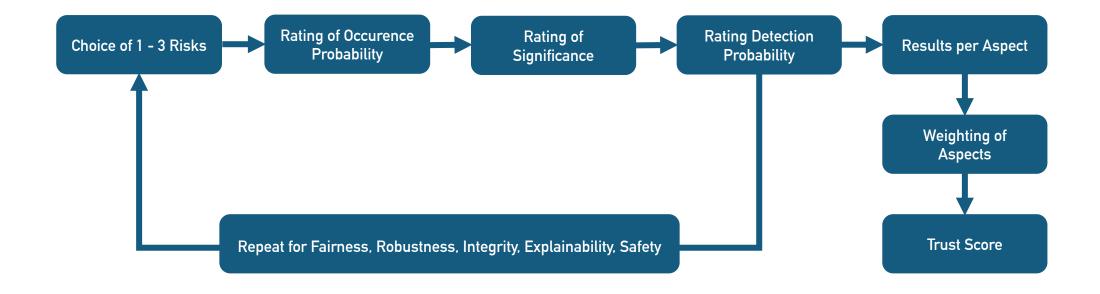
Taking Actions and Checking

OCCURENCE, SIGNIFICANCE AND DETECTION (OSD)

Occurence (O)		Significance (S	Detection (D)				
Probability		Impact		Probability			
Impossible	10	Negligible	10	Certain 10			
Unlikely	9	Barely perceptible	9	High	9		
Very low	7-8	Insignificant	7-8	Moderate 7-8			
Low	4-6	Moderate	4-6	Low 4-6			
Moderate	2-3	Severe	2-3	Very low 2-3			
High	1	Extremely severe	1	Unlikely 1			
Certain	0	Unacceptable	0	Impossible 0			

Aspect	Limitation	0	S	D	П	$\bar{\Pi}$	ω	TS_{ω}
Fairness	Inputs requested in a biased manner	4	4	8	5.04	5.04	0.2	1.01
Robustness	Risk of model inversion attacks	4	$\begin{bmatrix} 1 & 8 & 9 & 6.6 \\ 7 & 4 & 5 & 5.19 \end{bmatrix} 5.8$		5.80	0.2	1.18	
	Risk of adversarial attacks	7	4	5	5.19	0.09	0.2	1.10
Integrity	The model is not open source	3	9	2	3.78	3.78	0.2	0.76
Explainability	Illusion of Explanatory Depth	8	4	5	5.43	5.43	0.3	1.63
Safety	Decisions reveal sensitive information	6	3	6	4.76	4.76	0.1	0.48
							TS	5.06

RISKS JEOPARDIZING TRUST


Aspect	Risk
Fairness	Decisions made by the model are biased against certain groups or individuals
	User inputs are requested in a biased manner
	Performance differs for certain groups or can only be applied to certain groups
	The dataset is not representative of the application (sampling bias)
	The dataset includes protected attributes
	The dataset perpetuates biases (e.g., is generated from unfiltered web data)
Explainability	The model's decision-making process is not transparent
	The model's architecture is unknown or prohibits its interpretation
	Stakeholders cannot validate the model's outputs
	No documentation of the data collection and annotation process
	The dataset is not human understandable
	Lack of clarity on how missing values or outliers are handled in the dataset
Safety	Decisions or internal representations could reveal sensitive information
	Insufficient access control to proprietary model
	Erroneous decisions might lead to critical consequences
	Insufficient access control to proprietary data
	Exposure of sensitive information through metadata or auxiliary data
	Lack of transparent data governance policies (e.g., data usage agreements)
Robustness	Risk of adversarial or inversion attacks not mitigated
	The model does not generalize to different datasets
	Repeated model executions do not generate the same or similar outputs
	The dataset does not contain edge cases or outliers
	The data is susceptible to distribution shifts
	The data contains harmful anomalies or perturbations
Integrity	It cannot be guaranteed, that the model was not tampered with
	No output uncertainties are given
	Changes made to the model cannot be tracked
	It cannot be guaranteed, that the data was not tampered with
	Changes made to the data cannot be tracked
	Pronounced labeling uncertainties cannot be ruled out

ALGORITHMIC REPRESENTATION

```
Algorithm 1 FRIES Trust Score T calculated with our novel approach.
 Require: \omega_i \ \forall i \in [0, 5); \ \omega_i \geq 0.1
                                                                                   ▶ Set importance for each of the five aspects
 Require: \Psi_i^j \ \forall i \mid 0 \le j < n_i \mid 1 \le n_i \le 3
                                                                                                   \triangleright Select 1 – 3 limitations per aspect
 \begin{array}{lll} \textbf{Require:} & O_{\Psi_i^j} & \forall i,j; \ O_{\Psi_i^j} \in [0,10] \\ \textbf{Require:} & S_{\Psi_i^j} & \forall i,j; \ S_{\Psi_i^j} \in [0,10] \\ \textbf{Require:} & D_{\Psi_i^j} & \forall i,j; \ D_{\Psi_i^j} \in [0,10] \\ \end{array} \quad \begin{array}{ll} \triangleright & \text{Estimate how likely each limitation is to occur} \\ \triangleright & \text{Estimate how critical each limitation is} \\ \triangleright & \text{Estimate the likelihood of detection} \\ \end{array} 
  1: sum_{\omega} \leftarrow \sum_{i} \omega_{i}
 2: \omega_i \leftarrow \frac{\omega_i}{sum_{\omega_i}}
  3: for each i \in [0,5) do
              for each j \in [0, n_i) do
                  T_i^j \leftarrow \sqrt[3]{O_{\Psi_i^j} \cdot S_{\Psi_i^j} \cdot D_{\Psi_i^j}}
                   if O_{\Psi_i^j} = 10 \lor S_{\Psi_i^j} = 10 \lor D_{\Psi_i^j} = 10 then T_i \leftarrow 10
                      end if
                     if O_{\Psi_i^j} = 0 \lor S_{\Psi_i^j} = 0 \lor D_{\Psi_i^j} = 0 then
 10:
11:
                      end if
               end for
              T_i \leftarrow \frac{1}{n_i} \sum_{j=0}^{n_i-1} T_i^j
               for each j \in [0, n_i) do
                      if T_i^j = 0 then
 15:
                            T_i \leftarrow 0
 16:
                      end if
 17:
              end for
 19: end for
20: T \leftarrow \sum_{i=0}^{4} \omega_i \cdot T_i
 Ensure: T \in [0, 10]
                                                                                                         \triangleright Resulting FRIES Trust Score T
```

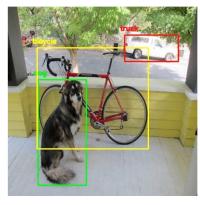
PROCEDURAL REPRESENTATION

EVALUATING THE APPROACH

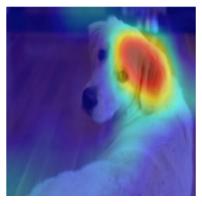
THE BENCHMARK

Datasets

LARa



DukeMTMC



CelebA

Models

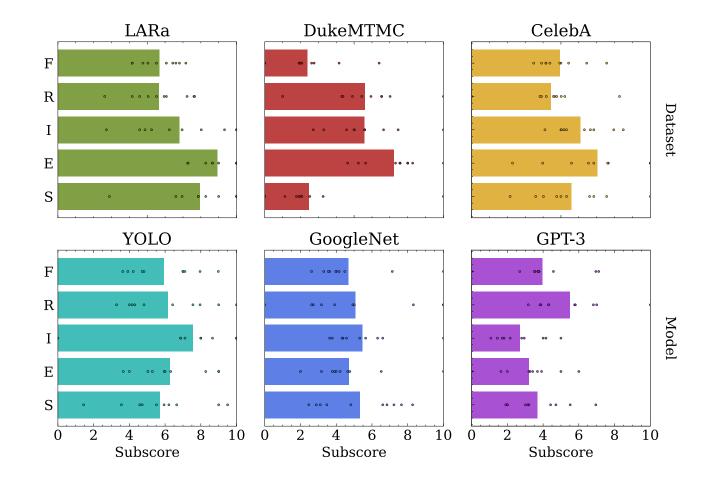
YOLO

GoogleNet

You
 Hey GPT-3, please tell us a little something about yourself.

 ChatGPT

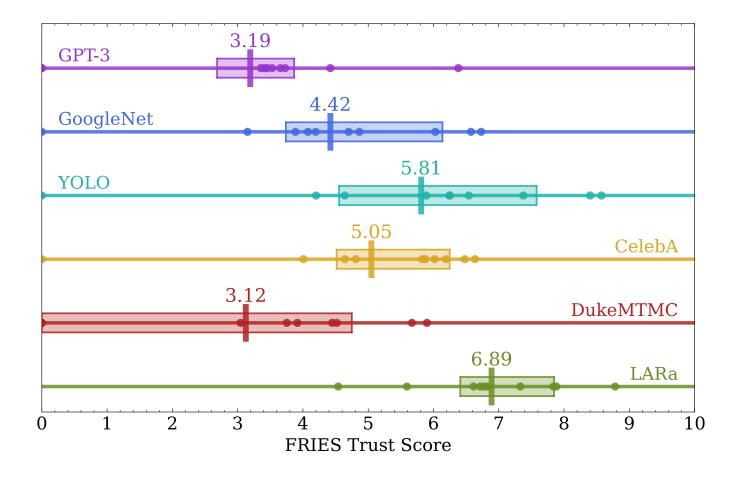
Called GPT-3, short for "Generative Pre-trained Transformer 3."


My purpose is to generate human-like text based on the input I receive. I've been trained on a vast amount of diverse text from the internet, which allows me to understand and respond to a wide range of topics and questions. Whether you need help with writing, brainstorming ideas, or just want to have a conversation, I'm here to assist you to the best of my abilities!

GPT-3

FRIES TRUST SCORE

RESULTS PER ASPECT



Benchmarking Trust: A Metric for Trustworthy Machine Learning

FRIES TRUST SCORE

OVERALL RESULTS

Slide 15

LIMITATIONS

WHERE DO WE GO FROM HERE?

- ▶ Risks
- Reliability
- Feedback
- Subjectivity

Benchmarking Trust: A Metric for Trustworthy Machine Learning

CONTACT GET IN TOUCH

Thank you!

Jérôme Rutinowski

TU Dortmund University

jerome.rutinowski@tu-dortmund.de

+49-231-755-4831

Link to the relevant paper:

