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Abstract

JMP software converts data into insights with no coding required, and is a leading solution for real-
world problem-solving in many industries. Some users call the JMP Profiler, the key tool for any data
modeler, “the coolest thing in JMP”. This presentation will demonstrate several Profilers and various
use cases and discuss it’s value in both industrial settings as well as in teaching and learning.

Profilers are interactive visualizations of any model built in JMP, being tree-based, regression
models, neural networks or other predictive models. The profiles are cross-section views of the
response surface for any number of factors (Xs) and responses (Ys). All factors can be changed
interactively to see the effects on the response(s) and on other profiles. Additional Profiler features
help with the model understanding and interpretation, like confidence intervals, overlaid data points
or interaction traces, sensitivity indicators and extrapolation warnings.

Based on the desirability representing the goals for each response, like maximize, minimize or match
target, the Profiler can also find the best factor settings to optimize the response(s) for the system
or process at hand. A built-in Monte-Carlo Simulation and Gaussian Process model helps to find
more robust settings in the light of any stochastic variation of the factors.

Beside the Prediction Profiler, we will also demonstrate the Contour Profiler, Interaction Profiler and
the Design Space Profiler — all interactive and visual tools to get the most out of your models.
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1. Introduction to JMP
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Analytic Capabilities

jmp.com/workflow

Files

Docs
Webpages
Databases
Web APIs
Cloud Sources

Open Source
Languages

3rd Party Files

Streamline your Analytic Workflow

Data Access

Data Blending and
Cleanup

N

Data Exploration and
Visualization

Analytic Capabilities

Design of Experiments

Basic Data Analysis
and Modeling

Advanced Statistical
Modeling

Predictive Modeling
and Machine Learning

Quality and Process
Engineering

Reliability Analysis

Consumer and Market
Research

Automation and
Scripting

(® See the JMP workflow in action
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Sharing and
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Results
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Where we play

jmp.com/success

* A strong R&D investment with teams
of scientists and engineers focused on

High need for Highest need for innovation to drive profitability.

analytics analytics

« Complex problems that need timely
solutions that can be implemented
collaboratively across the organization.

 Rapid development cycles so that new

Lower need High need for products and processes remain
for analytics analytics competitive.

Product innovation

* A need to define new processes and
stabilize them once in production.

Process innovation

"f-
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Success in the chemical industry

AllL 10 of the world’s largest chemical companies use JMP

BASF Dupont
Design time reduced by Fabrication steered
more than 75%, ensuring toward zero-defect
cleaner dishes and a status for semiconductor
healthier environment. Processes.

Kodak

Reduced defects to only
one defect in 300
million linear feet of
motion picture film.

Symrise

Drastically reduced the
experimentation workload
and improved response up

to 30-fold.
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Success in the pharmaceutical industry

20 of the world’s largest pharmaceutical companies use JMP

Thermo Fisher Lonza Novozymes
IMP was the only Increased the overall yield Method with 752 tubes
software that offered us by almost a factor of two, across 4 experiments

a range of tools allowing

access to data analysis while also achieving down to just 300 tubes
for non—statisticiazs significant time savings in 1 experiment.
' milestones.
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Success in the semiconductor industry

25 of the world’s top semiconductor companies use JMP

’

ST Microelectronics NXP Jeju Semiconductor Vishay
Reduction of Fabrication steered Dramatically reduced Significantly decreased
manufacturing defect toward zero-defect analysis time, limiting costs as a result of an
rate by 40% - helping status supporting better the cost of experiments 83% reduction in data
build momentum for products and higher and improving vyield. processing time.
analytics transformation. customer satisfaction.
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Success in the consumer goods industry

22 of the world’s top 25 consumer goods companies use JMP

Kirin Kraft P&G
Advanced sensory Saw a 50% reduction in Sophisticated
analysis led to a top- analysis time. experimentation yielded
rated drink. more insight in less
time.
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JMP Academic Program

jmp.com/academic

More than 1600 universities worldwide use JMP in teaching and research

Professors can spend more time on teaching concepts and real-world
applications without programming

The highly visual, point-and-click interface of JMP helps students grasp
statistical and analytical concepts to real data and apply those concepts
in their careers

Free academic resources for teaching and learning
Academic licensing
— Free Student Subscription for class use

- Single user licenses for academic research

~ Low-cost site licenses for JMP Pro (campuswide)
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2. Profilers in JMP
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Prediction Profiler: Purpose

* Visualize, explore and understand models

- Uncover modeled relationships and model limitations

- All model types®, any number of factors, any number of responses, any data types
« Support data-driven decision-making

- What-if scenarios

—- Optimization tasks, tolerance analysis, defect profiling, sensitivity analysis

— Quality-by-design

- etc.

") Exceptions will be mentioned later

J
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Prediction Profiler: Layout

Profile traces (in black) with error bars (categorical X)
or Cls (continuous X), holding all other X’s constant
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Contour Profiler

Horizontal slices show contour lines for two factors at a time
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Surface Profiler

3-D plots of responses for 2 factors at a time, or a contour surface plot for 3 factors
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Mixture Profiler

A Contour Profiler for mixture factors (with Ternary Plots)
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Optimizing a response curve

Functional Data Explorer > Load Target Function (“golden curve”)

FDOE Profiler

£ 79,84976 200
I 150
>
100
o o o o n O UL O uvu O W
o o (@) o ~— AN ANOMmT T
Al ™ < (o)
9,707 90 25 150 45
Time %Beads % Strength Flow(g/min) T(°C)



3. Profiler Demos
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Live Demo

- Single-response Prediction Profiler
- Multiple-response optimization
- Simulation Experiment for robust optimization
- More Profiler features
- Assess Variable Importance
- Confidence & Prediction intervals
* Interaction profiles, overlaid interactions
- Data points
« Extrapolation control
+ Constraints
- Design Space Profiler

J
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4. Deep Learning using Torch Add-in
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New in vi8: Two features for the data scientist

1) Python integration overhaul brings greater functionality
« Create and run Python scripts from inside JMP
« JMP bundles customizable Python 3.11.5 environment
« Preinstalled "jmp" package provides functions for interfacing with JMP
+ Better integration with JMP data tables (shared memory)

Add-ins:

« As an example of how to mass-customize JMP, building out add-ins can solve
unique problems or perform analyses that aren’t built into JMP directly.

- JMP add-ins can simplify sophisticated data science techniques in a familiar
point-and-click JMP workflow.

Jmp



New in vi8: Two features for the data scientist

2) Torch Deep Learning

- Add-in that brings the Torch deep learning library into JMP Pro's visual,
no-code interface (as free download from JMP User Community)

- Automatic k-fold crossvalidation

« Pre-trained models for image, text, and tabular data

* Robust hyperparameter settings

- Many JMP graphical outputs (incl. Profiler for tabular data)
« Save and reload models for further training, scoring

J
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Torch Deep Learning (JMP 18 Pro): Task
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Torch Deep Learning (JMP 18 Pro): Results

Torch Deep Learning
Response: Class  Predictor: Picture

Launch
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5. Resources
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Resources

« JMP Online Help: Introduction to Profilers

« Video: Using Prediction Profiling to Maximize Model Proficiency - Part 1

« Video: Using Prediction Profiling to Maximize Model Proficiency - Part 2

« RedFame: Monte Carlo Simulation Experiments for Engineering Optimisation
« Blog: Prediction Profiler enhancements in JMP® 18

« Video: Maximizing Quality Using Design Space Profiling

 Download: Torch Deep Learning Add-In for JMP Pro

Jmp


https://www.jmp.com/support/help/en/18.0/
https://community.jmp.com/t5/Mastering-JMP/Using-Prediction-Profiling-to-Maximize-Model-Proficiency-Part-1/ta-p/551449
https://community.jmp.com/t5/Mastering-JMP/Using-Prediction-Profiling-to-Maximize-Model-Proficiency-Part-2/ta-p/654856
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://redfame.com/journal/index.php/set/article/download/901/972&ved=2ahUKEwiN98ulu4uGAxXy7AIHHdw8Bbo4ChAWegQIDRAB&usg=AOvVaw1lodiYfTplQ5OMfTaDKeZe
https://community.jmp.com/t5/JMPer-Cable/Prediction-Profiler-enhancements-in-JMP-18/ba-p/718342?trMode=source
https://community.jmp.com/t5/Mastering-JMP/Maximizing-Quality-Using-Design-Space-Profiling/ta-p/732458/redirect_from_archived_page/true
https://community.jmp.com/t5/JMP-Add-Ins/Torch-Deep-Learning-Add-In-for-JMP-Pro/ta-p/733478

Wrap-up

Jmp



Model Profiler Enhancements in JMP 18

* Show prediction intervals for predicted
(individual) values as well as confidence intervals
for predicted means.

File Edit Tobles Rows Cols DOE Andlyze Grph Tools View Window Help

dptdd La@ |[a.iBan%.k?2ee|0drat+tzsOsS0O,
4 ~ Response HARDNESS

4 Effect Summary

= — * Show data points and overlaid interaction traces
w3 | on profilers.

“T Tiretread - Profiler of Pred Formuls HARDNESS - JMP Pro

SILANE'SILICA 2916 File Edit Tobles Rows Cols DOE Analyze Graph Tools View Window Help

Remove Add £di Exclude Undo (] FOR meesdl wal@ Q. a%.k22e0¢ra+smsSco,

A" Ganctes #¥ects with coneainng e¥ects 3bove Shem)

4 > Profiler

PRt s - * Save prediction and interval formulas in one step
- in model fitting platforms. This makes it easier to
plot intervals using Graph>Profiler.

Pred Formula HARDNESS

* Use the simpler, easier launch dialog in all profiler
platforms under the Graph menu.

* View and update constraints in the profiler more
easily.

* K Nearest Neighbors based extrapolation control.

» Publish profilers with prediction intervals and
interactive profilers for more model-types

in JMP Live. ffnp_



Statistical Thinking
for Industrial Problem Solving

A free online course

Learn more and enroll today:
jmp.com/statisticalthinking

SO0 Statistical Thinking and Problem Solving
Learn how to map a process, define and scope your project,
and determine the data you need to solve your problem.

Exploratory Data Analysis Correlation and Regression
Learn how to describe data with graphics and use interactive Ml Learn how to study the linear association between pairs
visualizations to find and communicate the story in your data

of variables, and how to fit and interpret linear and logistic
Quality Methods
u Learn about tools to quantify, control and reduce variation
in your product, service or process.

regression models.

Design of Experiments
Learn the language of design of experiments (DOE) and see

how to design, conduct and analyze an experiment in JMP.

Q Decision Making With Data = Predictive Modeling and Text Mining
i 7
ﬁ Learn to draw inferences from data, construct statistical 2l Learn how to identify possible relationships, build predictive
intervals, perform hypothesis tests, and understand the o models and derive value from free-form text.

relationship between sample size and power.

Free, onling, self-paced statistics
course.

|deal for anyone wanting to learn
fundamental skills around core

statistical applications.

Shaped by industry experts.

Helps drive statistical adoption
and comprehension.




Building an Analytics Culture

https://www.[mp.com/en us/software/analytics-advocate-guide.html

Get buy-in Streamline processes Build consensus
Build a team of De\/e[op infrastructure Socialize analytic
analytics advocates and analytic workflow successes

Visualize success Cultivate data literacy Drive decision
Define goals and Supplement/develop making at scale
metrics key training programs Democratize data and

the analytic process

Jmp


https://www.jmp.com/en_us/software/analytics-advocate-guide.html

Engineering Efficiency
JMP’s mission since 1989

Helping scientists and engineers speed innovation
by enabling better decisions with analytics.

Jmp



Thank you!

volker kraft@jmp.com

L )
Please contact me for a personal demo or discussion. h STATISTICAL
y DISCOVERY



