ABSTRACT

ndition-based maintenance is an effective method to reduce
xpected failures as well as the operations and maintenance costs.
This research discusses the condition-based maintenance policy
with optimal inspection points under the gamma degradation
process in order to improve the system reliability. A random effect
parameter is used to account for population heterogeneities and its
distribution is continuously updated at each inspection epoch. The
observed degradation level along with the system age is utilized for
making the optimal maintenance decision, and the structure of the
optimal policy is examined.

INTRODUCTION

/'\ ~ ﬁﬁ Maintenance and Reliability Engineering
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Asset Performance =
p = Integrity Management and Compliance

Training and Development

Maintenance and Support Services

Quantification of survival probability
— let T be the failure time of a product/unit
— P(T>1t)=S(t) =1 — F(t)

— non-increasing function of t

CONDITION-BASED MAINTENANCE (CBM)
— utilize modern sensor technology

— System Health Management (SHM) through periodic
Inspections

— maintenance actions based on the inspection of working
conditions

— proven effective in reducing unexpected failures with lower
operational costs

— outperform the traditional age-based and block-based
maintenance policies

MAIN OBJECTIVES

C0n51der Gamma degradatlon process with random effects

develop an optimal condition-based maintenance/replacement
policy (MDP)
— minimize the total operational costs

— replacement decision based on the observed degradation level
and the unit age

— investigate the structural properties of the optimal policy:
momnotone control limit policy

determine an optimal inspection interval
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GAMMA PROCESS

monotone degradation path {Y:, t >0}
independent increments:

(Y:, — Y;,) and (Y,, — Y5, ) are independent for 0 < s1 < s5 <t < 15
gamma distributed increments:

(Y = Ys) ~ Gamma(e|A(t) — A(s)], 5)

where A(t) is a monotonically increasing time transformation function with

A(0) = 0

Random Effect
— different units have different realizations of f

B ~ Inverse Gamma(y, \)

)

L'(v)

let Y; =Y;, be degradation levels observed at times ¢;, j =1,2,...,n
let Yn — (Yl,YQ, . ,Yn) and Aj — A(tj>

B e B B3>0

(B|Y ) ~ Inverse Gamma(alA, +v, Y, + A)
— updated posterior depends only on Y,, and A,

<Yn+1 — Yn
Yoi1 + A\

n> ~ Beta(a[An11 — Ap), al, +7)

— Proof: f(Yn+1lyn) = /o f(Yn+1 — ynlB) f(Blyn) d

(Yn11|Y,) depends only on Y,
— Markov property

STOCHASTIC PROPERTIES

Lemma 1.

(Yi1AlY:) is stochastically non-decreasing in Y;
viz., (Yeral|Ye = y1) < (Yera|Y: = o) given y1 <o

Lemma 2.

(Yira|Yz) is stochastically non-increasing in ¢
’U’l:Z., <}/t1—|-A1D/t1 - y> = <}/t2+A2D/t2 == y> given t1 > 12
and A(tl -+ Al) = A(tl) S A(tg - = AQ) == A(tz)

Unit 1

CBM PARAMETERS

]et d = inspection interval
c; = 1nspection cost
cf = corrective replacement cost
cp, = preventive maintenance cost (¢, < cy)
cq = downtime cost per unit time
exp(—rt) = discounting factor

@5\ PROCEDURE

mm & o Mﬁ%ﬁ%&@%{%@

periodic mspection with A(t) =t for illustration
at each inspection, make decision

mltlahze
t=0, Y(t

inspect Q cost ¢;
Y(t) > D?

D = degradation threshold

failure occurred!
v' perform Corrective Maintenance (CM) @ cost C;
v' restore the state to as-good-as-new state

T =inf{t | Y(t) > D}

failure is not self-announcing, only revealed through inspections

maintenance action is instantaneous
mltlahze
t =0, Y

NO

inspect Q cost ¢;
Y(t) > D?

How to Decide??

Option 1.
v’ perform Preventive Maintenance (PM) @ cost o
v' restore the state to as-good-as-new state

1mt1ahze
t=0, Y(t

inspect Q cost ¢;
Y(t) > D?

NO

Option 2.
v' defer decision to the next inspection: sett=t+ 9

failure may occur @ unknown failure time
=» downtime cost incurs due to loss of efficiency or quality if operating in the failure state

MARKOV DECISION PROCESS

.

(7, Y7,) forms discrete-time continuous-state Markov chain with
age-dependent transition probability

at each state, take one action from CM, PM, NULL

Value Function

— minimum total discounted cost, starting from the state (u,v) on
the infinite time horizon

— satisty the Bellman equation; Puterman (2009)

: —rd .
P min {e " Us(u,v) + Ws(u,v), ¢, + V5(0,0)}, v < D;
Cf—l—V(s(0,0), v>D
for equi-spaced inspection time u = 0,9,24,... and degradation level v > 0,
where

Us(u,v) = E|V5(u+96,Yuts) | 7 = u,Ys, = v| is the expected value with one
period transition from the current state

Ws(u,v) = E|p(T}) | 7 = u, Y7, = v] is the expected downtime cost based on
the current state

expected total maintenance cost V;(0,0)

o |

total discounted inspection cost S(3) =) "cie ™ =, (1 b e—r5)
k=0

=» minimize the total operational costs V;(0,0)+ S(5)
— find the optimal inspection interval 6*
— find the corresponding maintenance policy

STRUCTURE of OPTIMAL POLICY

e

Lemma 3. begin

[nitialize: VO(ty, Y¢,) «— 0;
Compute: P(Yz,,, [z, . 7p) and W(zy, Yy, ) for all 7., Yo, ;

while |V5(7y,, Yo, ) — VS 1(7y.. Yo, )| < € do

. n— if Y, > D then
Ws(u,v) is non-decreasing in v | VSt (T, Yo, ) = ¢ + VA0, 0);

and non-increasing in u else
Vsl (T, Yfk) _ 10 SV (T, YT/<+1 IE
P(Yr,,, Y7, Ti) + W(Ty. Y, )
if V(1. Yz,) = ¢p + V5(0, 0) then
| v+, Yo ) = ¢p + V5(0, 0);
end

Value Iteration de“d
Algorithm o

end

Us(u,v) is non-decreasing in v
and non-increasing in u

Theorem 1.

Given 9, the optimal maintenance policy that
minimizes V(0,0) is a monotone control limit
policy. 3 a non-decreasing sequence {&x} such
that the optimal action at state (kd,y) is PM
if y > &, and NULL otherwise

Degradation Threshold

Degradation

Figure 1. Optimal maintenance policy
with the inspection interval 0 = 1.3

ﬁi%ﬁw:?%' S

lim V5(0,0) + S(6) = Elcqe™"" /r | Yo = 0]
— V5(0,0) increases in ¢ to a constant as the downtime cost dominates

— S(9) decreases in § to 0

0* = arg méin\/g(O, 0) +.S(9)

— minimize total cost
— robust as flat cost near 6*

Figure 2. Cost functions at
different inspection interval ¢
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