Adding points to D-optimal designs

Carlos de la Calle-Arroyo, Mariano Amo-Salas, Jesús López-Fidalgo, Licesio J. Rodríguez-Aragón

Universidad de Castilla-La Mancha Universidad de Navarra

May 17, 2021

The model

A regression model can be expressed as

$$y(x) = \eta(x; \theta) + \varepsilon \quad \varepsilon \sim \mathcal{N}(\mu, \sigma^2(x)),$$

with θ the unknown parameters of the model, of interest for the experimenter.

Approximate Designs

A design is a collection of points to take a measure and the number of observations to be taken at those points. A design seen as a probability measure over the design space is called an **approximate design**. It consists on the support points (x_i) and their corresponding proportions $(\xi(x_i))$:

$$\xi = \left\{ \begin{array}{ccc} x_1 & \dots & x_k \\ \xi(x_1) & \dots & \xi(x_k) \end{array} \right\}.$$

Approximate designs have properties that allow us easier calculations.

FIM

Under the normality assumption, the Fisher Information Matrix (FIM) of a design ξ is

$$M(\xi, \theta) = \sum_{x \in \mathcal{X}} f(x) f^t(x) \xi(x),$$

with $f(x) = \partial \eta(x, \theta) / \partial \theta$, the partial derivative vector of the model for each parameter, a first order Taylor expansion if the model is nonlinear.

D-optimality

While searching for optimal designs, a criterion to minimise $M^{-1}(\xi,\theta)$, proportional to the variance-covariance matrix of the estimates of the model, needs to be selected. In this work, this criterion is D-optimality, with the criterion expression:

$$\phi_D[M(\xi,\theta)] = |M(\xi,\theta)|^{-1/m}$$

and efficiency function

$$\operatorname{eff}_D(\xi_1,\xi_2) = \left(\frac{|M(\xi_1,\theta)|}{|M(\xi_2,\theta)|}\right)^{-1/m}$$

5

D-optimality Equivalence Theorem

The General Equivalence Theorem [3] shows that a design ξ^* is ϕ_D -optimal if and only if,

$$\psi(x,\xi^{\star}) = f^t(x)M^{-1}(\xi)f(x) - m \ge 0, \quad x \in \mathcal{X},$$

with the equality holding at the support points of ξ^* . The sensitivity function is

$$d(x,\xi) = f^t(x)M^{-1}(\xi)f(x)$$

Determinant recursive formula

The recursive formula for the determinant of the design $\xi_{n+1} = (1 - \alpha)\xi_n + \alpha\xi_{x_{n+1}}$, adding a unipunctual design supported at x_{n+1} to a non-singular design ξ_n [2, p. 153], is given by

$$|M(\xi_{n+1})| = |M(\xi_n)|(1-\alpha)^m \left(1 + \frac{\alpha d(x_{n+1},\xi_n)}{1-\alpha}\right),$$

which, with a bit of algebra gives an expression that relates the efficiency of ξ_{n+1} with the sensitivity function [1]

$$d(x,\xi_{n+1}) = \frac{1-\alpha}{\alpha} \left(\left(\frac{\text{eff}}{1-\alpha} \right)^m - 1 \right).$$

Why modify the optimal design?

Optimal designs tend to require too few points, frequently very extreme. This often means:

- ▶ Impossibility to perform a lack-of-fit test.
- ▶ Impossibility to verify the adequacy of the experimental observations for the model.

▶ Preference for designs with a higher number of points. The aim of this study is to improve the D-optimal design from the experimenter's point of view, building D-augmented designs.

D-augmented designs are designs with more support points than the optimum but still guarantee a good enough efficiency.

Theorem

Let ξ be a non-singular design and $x_1, x_2, \ldots, x_s \in \mathcal{X}$ such that $d(x_i, \xi) \geq d(x_1, \xi)$ for all $i = 2, \ldots, s$. Then, let $\alpha_i \in (0, 1)$ for all $i = 1, \ldots, s$, and $\alpha = \sum_{i=1}^s \alpha_i < 1$ and $\xi_1 = (1 - \alpha)\xi + \alpha\xi_{x_1}$.

Then $\operatorname{eff}(\xi_1,\xi) \leq \operatorname{eff}(\xi_s,\xi)$ for $\xi_s = (1-\alpha)\xi + \sum_{i=1}^s \alpha_i \xi_{x_i}$.

Application

The previous result allows us to:

- 1. Select an initial design.
- 2. Choose the combined **weight** of the new points to be added.
- 3. Choose a valid minimum **efficiency** for the resulting design.
- 4. Calculate the regions of candidate points.
- 5. Add points to the design in the desired proportion, with the guaranteed efficiency.

Shinny app

To illustrate this work, a Shiny App has been developed. It allows to calculate D-augmented design for a few models. It can be visited at https://kezrael.shinyapps.io/AddPoints/ .

D-Optimal Design

First, the user selects the model, the space of the design and nominal values, if needed, and calculates the D-optimal design

Design Builder	Antoine Equation		
Presentation Set up & Optimal design Outloom design 4	Optimum Design	\checkmark	Sensitivity Function Torthe column degen
🗅 Your design 🔍 🤇	Optimum design	-	Sensitivity Function -
Contact	Point	Weight	0 Q + D B X # 7 == B
	44.900	0.333	
lepsts: Choose a model	83.204	0.333	
Antoine Equation •	100.000	0.333	,
Design Space	Showing 1 to 3 of 3 entries		
8.07131			Tempenture (%)
Initial value for parameter b			
1730.83			

Region of candidate points

Then, by selecting the weight and the efficiency, the user generates the region of candidates points

Design Builder	■ Antoine Equation		
	Given Design	Sensitivity Function	Efficiency %
>> Design Proposal >> Restricted design	New design -	New sensitivity	-
theoretains Contact Contact	Point Weight No data available in table Showing 0 to 0 of 0 entries	8.85 6.00 6.00 6.00 6.00 8.00 8.00 8.00 8.00	
Ed to the term term to the con-		<u>6</u> 28	so 73 500 x

Castilla-La Manchi

D-augmented design

Lastly, the user either adds points to create a D-augmented design or gets a pre-build D-augmented design

Design Builder	■ Antoine Equation			
	Given Design With crossports	Ê	Sensitivity Function	Efficiency 92.4%
» Design Proposal » Restricted design four design 4	New design	– Weight \$	New sensitivity	-
Contact	44.900	0.193		
Inputal Weight of the new point(s),	83.204	0.193	3	
alpha 2 500 	31.547 61.415	0.084	1	
Possible efficiency, delta	71.332 90.367	0.084	0 25 5	0 75 100
Region of Candidate Points	99.108 Showing 1 to 8 of 8 entries	0.084	Tenpe	nture (°C)
Calculate design				

- S. Argumedo-Galván and V. López-Ríos. Metodología para incrementar el número de puntos experimentales en un diseño *D*-óptimo. *Ing. y Cien.*, 10:181–201, 2014.
- [2] A. Atkinson, A. Donev, and R. Tobias. Optimum Experimental Designs, With SAS. Oxford Statistical Science Series. OUP Oxford, 2007.
- [3] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. *Canad. J. Math.*, 12:363–366, 1960.

Thanks for you attention!

For further information you can find me at carlos.callearroyo@uclm.es