Generalized Likelihood Ratio (GLR) control charts with composite hypotheses
 An application to high-purity processes in chemical industry
 Caterina Rizzo ${ }^{1,3}$, Swee-Teng Chin² ${ }^{2}$, Alessandro Di Bucchianico ${ }^{3}$
 ${ }^{1}$ Dow Inc., Herbert H. Dowweg 5, 4542 NL Hoek, The Netherlands
 ${ }^{2}$ Dow Inc., 332 SH 332 E, Lake Jackson, TX 77666, USA
 ${ }^{3}$ Eindhoven University of Technology, Department of Mathematics, P.O. Box $513,5600 \mathrm{MB}$ Eindhoven, The Netherlands

The case study: defect monitoring in pellet production

The case study: model and challenges

- Need of monitoring procedures that are tailored based on different statistical models and more effective at detecting more realistic out-of-scenarios
- Challenges of aggregating data: process time and control chart time are asynchronous

Points plotted in the Bernoulli $\left(\mathrm{Y}_{\mathrm{i}}\right)$ and Time-between-events $\left(\mathrm{X}_{\mathrm{i}}\right)$

Process Time
DEFINITION 1: Let τ_{π} the cumulative time from the start at which the change occurs, referring to the process time and let $\tau+1$ be the first decision point at which it is possible to detect the change on the control chart time, then τ is

$$
\inf \left\{\tau: \sum_{i=1}^{\tau} x_{i} \geq \tau_{\pi}\right\}
$$

Sequential change-point detection under simple hypotheses

- The most widely set of simple hypothesis studied in statistical process control represent an abrupt and unexpected persistent shift in the monitored parameter

$$
\begin{array}{ll}
H_{0}: & \theta=\theta_{0}, \text { for all } i \\
H_{a}(\tau): & \left\{\begin{array}{l}
\theta_{i}=\theta_{0}, \text { for } i \in(0, \tau] \\
\theta_{i}=\theta_{1}, \text { for } i \in[\tau+1, \infty)
\end{array}\right.
\end{array}
$$

- Gamma log-likelihood ratio statistics The parameter θ_{0} is assumed to be well estimated from historical data. The unknown post-change mean is estimated using the maximum likelihood estimation.

$$
\ln \Lambda_{k}^{\Gamma}\left(\theta_{0}, \theta_{1} ; \mathbf{x}\right)=\max _{0 \leq \tau<k-1} r(k-\tau)\left[\ln \left(\frac{\theta_{0}}{\widehat{\theta_{1}}}\right)+\frac{\widehat{\theta_{1}}-\theta_{0}}{\theta_{0}}\right]
$$

- In this context
- r represent the order of the chart: it is fixed and known a priori
- The $\ln \Lambda_{k}^{\Gamma}$ statistics is always defined

Sequential change-point detection under composite hypotheses

Indifference interval model

- Simple hypotheses set a hard limit to a decision between one of two possible states of nature; composite hypotheses cover a set of values from the parameter space.
- In practical scenarios it is more important to detect a change from a target value allowing a margin, i.e., so that the process mean remains within a certain specified tolerance interval. (indifference interval model)

$$
\begin{array}{ll}
H_{0}: & \theta_{i}=\theta \in\left[\theta_{0}-\delta, \theta_{0}+\delta\right], \text { all } i \\
H_{a}(\tau): & \left\{\begin{array}{l}
\theta_{i}=\eta \in\left[\theta_{0}-\delta, \theta_{0}+\delta\right] \text {, for } i \in(0, \tau] \\
\theta_{i}=\xi \notin\left[\theta_{0}-\delta, \theta_{0}+\delta\right], \text { for } i \in[\tau+1, \infty),
\end{array}\right.
\end{array}
$$

- This model represents a more appropriate option for multi-products processes with different parameters but same specification target.

Sequential change-point detection under composite hypotheses

Different change-point scenarios

Intensity functions for different change-point scenarios

Sequential change-point detection under composite hypotheses

Indifference interval

- The likelihood ratio for this model is

$$
\Lambda_{k}(\theta, \eta, \xi ; \mathbf{x})=\max _{0 \leq \tau \leq k-1} \frac{\sup _{\eta \in \Theta_{0}} \prod_{i=1}^{\tau} f_{\eta}\left(x_{i}\right) \sup _{\xi \notin \Theta_{0}} \prod_{i=\tau+1}^{k} f_{\xi}\left(x_{i}\right)}{\sup _{\theta \in \Theta_{0}} \prod_{i=1}^{k} f_{\theta}\left(x_{i}\right)}=\max _{0 \leq \tau \leq k-1} \frac{\prod_{i=1}^{\tau} f_{\hat{\eta}}\left(x_{i}\right) \prod_{i=\tau+1}^{k} f_{\hat{\xi}}\left(x_{i}\right)}{\prod_{i=1}^{k} f_{\hat{\theta}}\left(x_{i}\right)}
$$

- It must be noted that in these conditions, when the null hypothesis parameters need to be estimated (i.e., composite null hypothesis), the numerator and denominator do not cancel out since $\hat{\theta} \neq \hat{\eta}$.

Sequential change-point detection under composite hypotheses

Epidemic shift model

The epidemic shift model represents a temporary change of parameters, which is a characteristic situation where a feedback controller is active.

- A more generic version of the classical change-point problem since there are multiple change-points with $0 \leq \tau_{1} \leq \tau_{2}$.

Intensity function for a epidemic shift

Parameter estimation

Indifference Interval Model

The parameters in the composite alternative hypothesis model are subjected to interval restrictions.

where $\hat{\xi}^{*}$ is the unrestricted maximum likelihood estimator of the out-of-control parameter.

Parameter estimation

A side note

- In simple-hypotheses models the parameters might be also subjected to interval restriction (e.g., onesided control charts)
- However, one needs to take it into account also in the definition of the log-likelihood statistic
- In literature, the estimate in the log-likelihood statistics is often replaced by the unrestricted MLE.

Conclusions

- Monitoring schemes in chemical industry needs practical and tailored solutions to be effective and accepted;
- Generalized likelihood ratio-based control charts are known to outperform competitors in detecting wide range of parameters and to offer flexibility for more complex out-of-control scenarios;
- In this study we
- Explored indifference interval and epidemic shift models as more appropriate out-of-control scenarios in the context of high-purity processes;
- Highlight the complexity and pitfalls of composite hypothesis change-point detection.

References

1. A. Tartakovsky, I. Nikiforov, and M. Basseville. Sequential Analysis: Hypothesis Testing and Change-point Detection. Taylor \& Francis Group, Boca Raton, 2015.
2. J.T. Chang and R.D. Fricker Jr. Detecting when a monotonically increasing mean has crossed a threshold.Journal of Quality Technology,

31(2):217-234, 1999.
3. E. Çınlar. Introduction to Stochastic Processes. Prentice-Hall, 1975.
4. A. Di Bucchianico, M. Husková, P. Kláasterecký, and W.R. van Zwet. Performance of control charts for specific alternative hypotheses. In J. Antoch, COMPSTAT 2004 Symposium, 903-910, Heidelberg, 2004.
5. W. Huang, M.R. Reynolds Jr., and S. Wang. A binomial GLR control chart for monitoring a proportion.Journal of Quality Technology 44(3):192-208, 2012.
6. F. Kaminsky, J.C. Benneyan, R.D. Davis, and R.J. Burke. Statistical control charts based on a geometric distribution.Journal of Quality Technology, 24(2):64-69, Jan 1992.
7. A. KazemiNia, B.S. Gildeh, and Z. Abbasi Ganji. The design of geometric generalized likelihood ratio control chart.Quality and Reliability Engineering International, 34(5):953-965, 2018.
8. T.L. Lai. Information bounds and quick detection of parameter changes in stochastic systems. IEEE Transactions on Information Theory, 44(7):2917-2929, 1998.
9. J. Lee and J.Park. Poisson GLR control charts. The Korean Journal of Applied Statistics, 27(5):787-796, 2014.
10. J. Lee and W. H. Woodall. A note on GLR charts for monitoring count processes.Quality and Reliability Engineering International, 34(6):1041-1044, 2018.
11. J. Lee, Y. Peng, N. Wang, and M.R. Reynolds Jr. A GLR control chart for monitoring a multinomial process. Quality and Reliability Engineering International, 33(8):1773-1782, 2017.

Thank you for your attention

