

# Consumers' satisfaction with a product analysed through the lens of fuzzy theory

ENBIS 2021 Spring Meeting

- Biasetton Nicolò, Università degli studi di Padova
- Disegna Marta, Bournemouth University
- Salmaso Luigi, Università degli studi di Padova





Università degli Studi di Padova

# Introduction



### Aim

.ul

Y

N

%

.... \_\_\_\_

Ţ.

Cluster consumers based on their satisfaction with an Electric engine Pressure Washer with a focus on more dissatisfied consumers.

### Problem

Satisfaction on different product characteristics is collected using Likert-type scales questions

### Method

### Fuzzy C-Medoid for fuzzy data.

# **Case study**



**Product:** Electric engine Pressure Washer

### Sample size: 1125 consumers

### Variables:



- Overall rating
- Overall cleaning
- Handling easiness
- Propensity for buying
- Satisfaction with customer service



- Demographic characteristics
- Usage characteristics
- Issues
- Stains cleaned
- Other characteristics

Note: KPIs are used to cluster consumers and Drivers are used to profile clusters

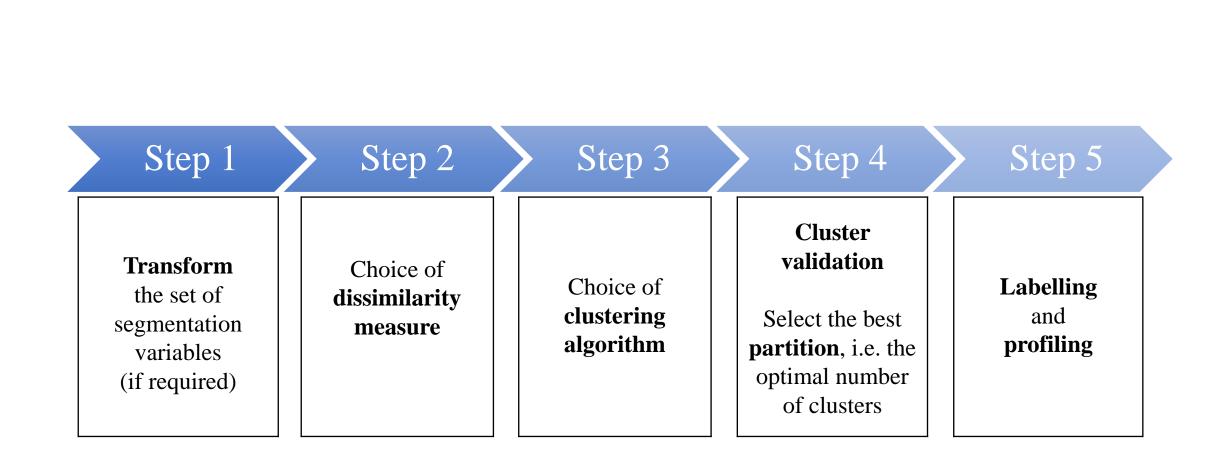
18/05/2021

UNIVERSITÀ

degli Studi di Padova

## **Cluster analysis - steps**





#### 18/05/2021

<u>...l</u>

Y

N

÷

....

<u>م</u>



**1.** Due to the low proportion of negative score, we decided to re-scale into a **3-point** scale the original 5-point scale to better higlight unsatisfied people and their commonalities.

| Original scale | negative | 1 | 2 | 3 | 4   | 5 | positive |
|----------------|----------|---|---|---|-----|---|----------|
|                |          | [ | γ |   | J ↓ | Ļ |          |
| New scale      | negative |   | 1 |   | 2   | 3 | positive |

**2.** Customers who gave **maximum score** (5) to **all KPI** have been **excluded**. A total of 260 customers have been removed from the dataset and the final sample size is 865 observations.

Filter

Y

N

÷

.....

Rescale

# **Step 1: Fuzzification Likert type scale**



### 3. Since:

\_\_\_\_\_ |\_≗≗≗

Y

N

 $\frac{1}{2}$ 

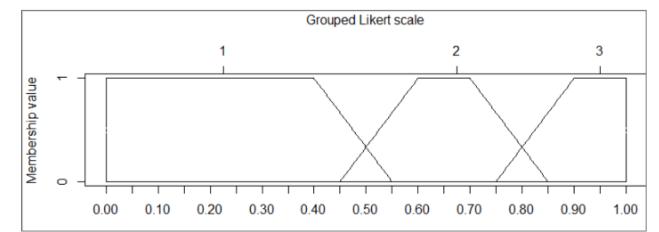
....

¢

- KPI have been collected using different scales not fully comparable
- Likert-type scale entiles a certain degree of **uncertainty/vagueness** (Davidov et al. 2014; D'Urso 2007; D'Urso et al. 2013; Disegna et al. 2018):

**KPI variables** have been recoded into **fuzzy data**, i.e. each individual score or expression is recoded into a range of possible values (Dubois and Prade 1988).

Following Sii et al. (2001), the **trapezoidal fuzzy number** has been used in this study to recode the 3-point Likert-type scale satisfaction variables:



Fuzzify



Since segmentation variables are trapezoidal fuzzy numbers, the dissimilarity between two units is measured by comparing the fuzzy data observed on each unit.

Therefore, the **trapezoidal fuzzy distance** between the *i*-th and *j*-th units (with  $i \neq j$ ) suggested by Coppi et al. (2012) has been computed as follows:

$$d_F^2(\widetilde{x}_i, \widetilde{x}_j) = \left[\omega_M^2\left(\|\boldsymbol{m}_{1i} - \boldsymbol{m}_{1j}\|^2 + \|\boldsymbol{m}_{2i} - \boldsymbol{m}_{2j}\|^2\right) + \omega_S^2\left(\|\boldsymbol{l}_i - \boldsymbol{l}_j\|^2 + \|\boldsymbol{r}_i - \boldsymbol{r}_j\|^2\right)\right]$$

where  $\widetilde{x}_i \equiv \{\widetilde{x_{iy}} = (m_{1iy}, m_{2iy}, l_{iy}, r_{iy})_{LR}\}$  denote the fuzzy data vector for the ith object;

 $\boldsymbol{m}_{1i} \equiv (m_{1i1}, \dots, m_{1iy}, \dots, m_{1iY})', \boldsymbol{m}_{2i} \equiv (m_{2i1}, \dots, m_{2iy}, \dots, m_{2iY})', \boldsymbol{l}_{1i} \equiv (l_{i1}, \dots, l_{iy}, \dots, l_{iY})', \boldsymbol{r}_{1i} \equiv (r_{i1}, \dots, r_{iy}, \dots, r_{iY})'$ , the operator  $\| \dots \|^2$  denote the squared Euclidean distance and  $\omega_M, \omega_S$  are suitable weights for the center component and the spread component constrained by the following conditions:  $\omega_M + \omega_S = 1$  (normalization condition) and  $\omega_M \ge \omega_S \ge 0$  (coherence condition)

.ıl

N

÷

....

# Step 3: Fuzzy C-medoid clustering algorithm

Università Decli Studi Di Padova

The fuzzy C-medoid algorithm has the advantages of both Fuzzy and Partition Around Medoids (PAM) algorithms:

### • Fuzzy clustering algorithm

- ✓ Allow to represent the real world, often characterised by unclear boundary among clusters, in a more realistic way
- ✓ More computationally efficient because dramatic changes in the cluster membership are less likely to occurr
- $\checkmark$  Less affected by local optima
- $\checkmark$  Allow to cope with uncertainty in the assignement of each unit to a cluster
- PAM

ŕ/\_\_\_\_\_\_\_\_

N

 $\frac{1}{2}$ 

....

✓ Define the prototype of each cluster as an actually observed unit. This prototype is called **Medoid** 

The algorithm can be formalized as the following minimisation problem:

$$\min_{u_{ic}} \sum_{i=1}^{n} \sum_{c=1}^{C} u_{ic}^{p} d_{ic}^{2}(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{c})$$
  
Subject to  $\sum_{c=1}^{C} u_{ic} = 1$  and  $u_{ic} \ge 1$ 

Where:

- $u_{ic}$  is the membership degree of the *i*-th unit to the *c*-th cluster (c = 1, ..., C);
- p > 1 is a weighting exponent that controls the fuzziness of the obtained partition (the more p is near to 1 the more the partition is closer to a crisp one)
- $d_{ic}^2(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_c)$ : trapezoidal fuzzy distance between *i*-th unit and *c*-th medoid

# **Step 4: Cluster validation**

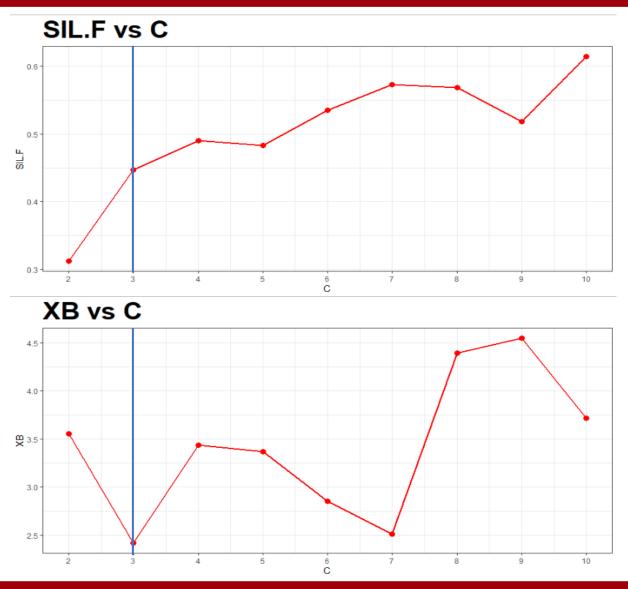


To select the best partition, (the optimal number of clusters) two complex indicators have been adopted:

- **Fuzzy Silhouette (SILF)** to be maximized (at least locally)
- **Xie-Beni** (**XB**) to be minimized (at least locally)

Both SILF and XB measure the **separability** between the clusters and the **homogeneity** of units inside the same cluster:

The SILF and XB for  $C \in [2, 10]$  have been computed. From the visual inspection of the graphs, the optimal partition is 3 clusters.



Y

N

ç

....

Consumer' satisfaction with a product analysed through the lens of fuzzy theory

# **Step 5: Clustering results**

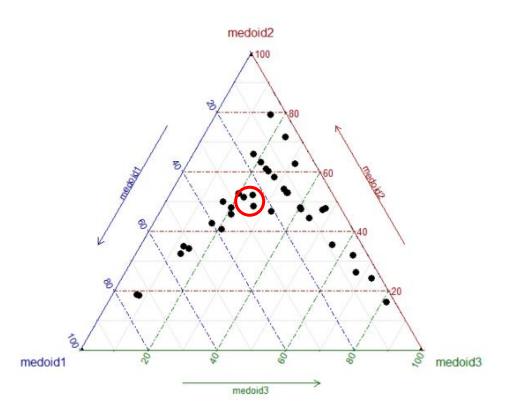
### The final number of clusters is 3

The distribution of each customer in the three groups is represented in the ternary plot graph.

### Note that:

- each consumer is represented by three values (membership degrees) which represent how much is/she belongs to the three clusters.
- the medoids (representatives of each cluster) are visualised at the vertices of the triangle.





These customers almost equally belong to all three clusters, meaning that they are not well classified.

# **Step 5: Labeling**

ŕ/\_\_\_\_\_\_\_\_

-11

Y

N

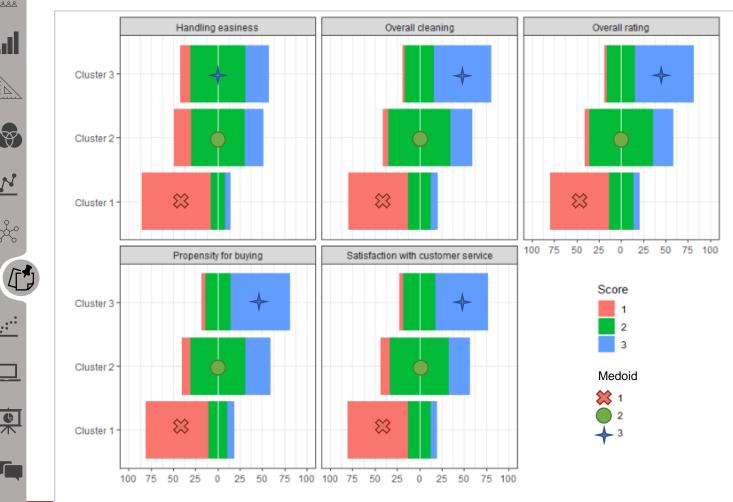
ç

....

¢



Per each KPI, the weighted proportion of each score (1-3) by cluster is visualised. Note that the membership degree is used as weight.



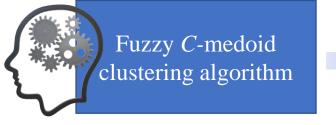
Cluster 1 groups consumers with the highest proportion of **1** = **«Dissatisfied»** 

Cluster 2 groups consumers with the highest proportion of **2** = **«Satisfied»** 

Cluster 3 groups consumers with the highest proportion of **3** = **«Completely** satisfied»

# **Step 5: Profiling - FML model**





 $u_{ic}$ : membership degree for the *i*-th unit to the *c*-th cluster constrained to:

- $0 \le u_{ic} \le 1$
- $\sum_{c=1}^{C} u_{ic} = 1$

### Aim:

<u>م</u> ا

<u>.</u>]]

Y

N

÷

predict the probability to belong to each cluster based on the Drivers

OUTPUT

### Method:

Since the dependent variables are the memberships obtained through the cluster analysis, i.e. variables define in the interval [0-1], the **Fractional multinomial logit** (FML) model has been adopted:

$$P(u_{ic}|X_i) = G(X_i, \beta_c) = \frac{e^{X_i \beta_c}}{\sum_{c=1}^{C} e^{X_i \beta_c}} , \qquad c = 1, ..., C$$

#### where

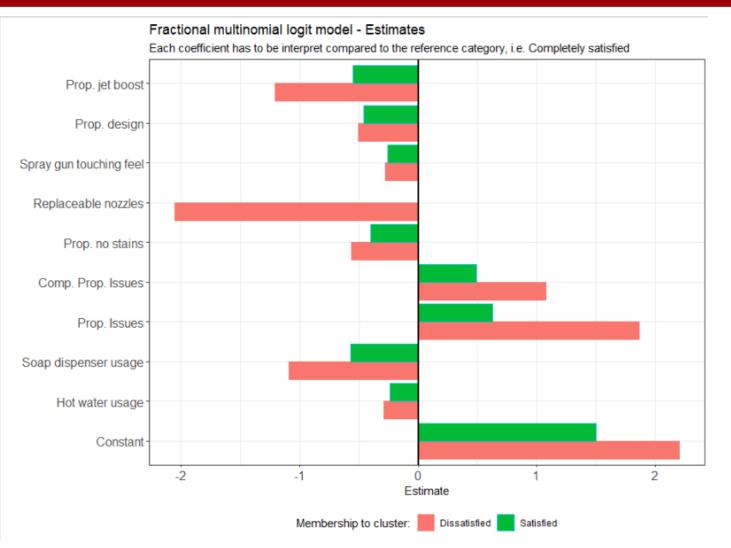
- $X_i$  represents the vector of independent variables observed for the *i*-th unit;
- $\beta_c$  represents the estimated vector of model parameters for the *c*-th cluster.

# **Step 5: FML results**



 $\square$ 

....



Higher the **proportion of issues encountered more often compared to usual product**, higher the probability to belong to the unsatisfied group compared to the completely satisfied group.

The presence of **replaceable nozzles** (instead of adjustable), lower the probability to belong to the unsatisfied group compared to the completely satisfied group.

Note: Only variables with estimated coefficients significantly different from zero are reported.

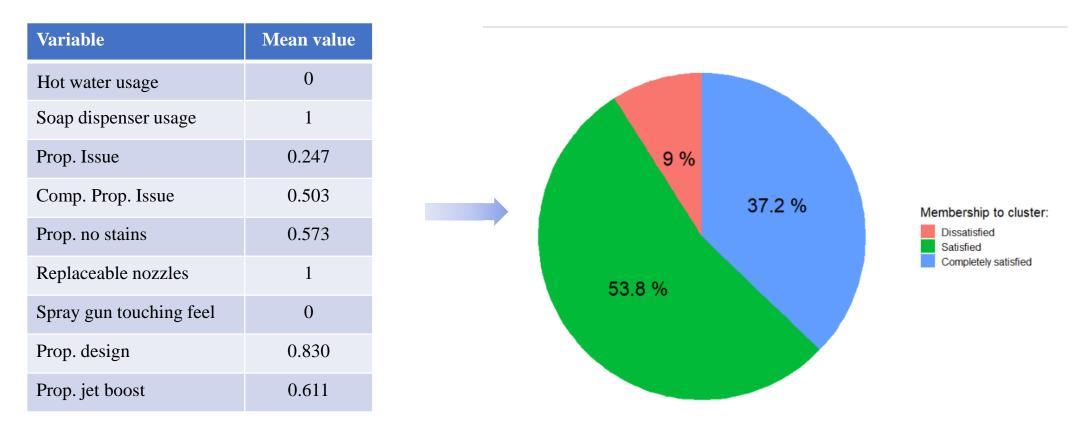
## Prediction



....

**E** 

### What is the estimated probability to belong to each cluster?



Note: These results are obtained considering a fictituous person having mean values for each driver.

18/05/2021

Consumer' satisfaction with a product analysed through the lens of fuzzy theory

## References

.....

Y

N

Ś

....

**E** 



- Coppi, R., D'Urso, P., Giordani, P., (2012) "Fuzzy and possibilistic clustering for fuzzy data". *Computational Statistics & Data Analysis* 56 (4) 915–927.
- D'Urso, P. (2007). Clustering of fuzzy data. In J. V. De Oliveira, & W. Pedrycz (Eds.). *Advances in fuzzy clustering and its applications* (pp. 155–192). J. Wiley and Sons.
- D'Urso, P., De Giovanni, L., Disegna, M., & Massari, R. (2013). "Bagged Clustering and its application to tourism market segmentation". *Expert Systems with Applications*, 40, 4944–4956.
- Davidov, E., Meuleman, B., Cieciuch, J., Schmidt, P., & Billiet, J. (2014). "Measurement equivalence in cross-national research". *Annual Review of Sociology*, 40, 55–75.
- Disegna M., D'Urso P., Massari R. (2018) "Analysing cluster evolution using repeated cross-sectional or- dinal data". *Tourism Management*, 69, 524-536.
- Dubois, D., & Prade, H. (1988). *Possibility theory*. New York: Plenum press
- Sii, H. S., Ruxton, T., Wang, J., (2011) "A fuzzy-logic-based approach to qualitative safety modelling for marine system". *Reliability Engineering and System Safety*, 73, 19-34.

## **Questions? Comments?**



# Thanks for your attention!

Nicolò Biasetton

nicolo.biasetton@phd.unipd.it

Marta Disegna

disegnam@bournemouth.ac.uk

Luigi Salmaso <u>luigi.salmaso@unipd.it</u>

18/05/2021

Y

N

÷

....

Consumer' satisfaction with a product analysed through the lens of fuzzy theory





#### **Fuzzy Silhouette index (FS):**

$$FS = \frac{\sum_{i=1}^{N} (u_{ri} - u_{qi})^{\alpha} \lambda_{i}}{\sum_{i=1}^{N} (u_{ri} - u_{qi})^{\alpha}}, \qquad \lambda_{i} = \frac{(b_{i} - a_{i})}{max\{b_{i}, a_{i}\}}$$

Where:

.....

Y

N

Ż

....

•  $a_i$  is the average distance between the *i*-th unit and the units belonging to the *r* cluster (with which *i* is associated with the highest membership degreee)

•  $b_i$  is the minimum (over cluster) average distance of the *i*-th unit to all units belonging to the cluster q with  $q \neq r$ 

• r, q are respectively the first- and second-best cluster (accordignly to membership degree) to which *i*.th unit is associated

- $(u_{ri} u_{qi})^{\alpha}$  is the weight of each  $\lambda_i$ , calculated upon the fuzzy matrix U  $(u_{ri}, u_{qi})$  are the first and second largest element of the i-th column)
- $\alpha$  is an optional user defined weighting coefficient

The higher the value of FS, the better the assignment og the units to the clusters simultaneously obtaining the minimisation of the intra-cluster distance and the maximisation of the inter-cluster distance

### Xie-Beni index (XB)

$$XB = \frac{\sum_{c=1}^{C} \sum_{i=1}^{N} u_{ic}^{p} d_{ic}^{2}(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{c})}{N d^{2}_{min}}$$

Where:

 $d^{2}_{min} = min_{c=i,j} \| \tilde{\mathbf{x}}_{i} - \tilde{\mathbf{x}}_{j} \|$  is the minimum distance between cluster centroids.

The more separate the clusters, the larger the  $d_{min}^2$  and the smaller the XB index.

The lower the value of XB, the better the assignment og the units to the clusters simultaneously obtaining the minimisation of the intra-cluster distance and the maximisation of the inter-cluster distance