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Introduction

Motivating examples: control of complex parts

Metal Additive Manufacturing productions

a) lightweight bracket for space applications, b) topologically optimized space
antenna support and c) rocket engine demonstrator
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Introduction

Object characterization: from simple to complex shapes

Clear quality features

For simple parts as screw and bolts, quality features are straightforward to
identify, and uni- or multi-variate control charts can be built
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Introduction

Object characterization: from simple to complex shapes

What quality features?

(a) Prototype (b) Defective-MS (c) Defective-EM

(d) Defective-MS (e) Defective-EM

The egg shells were manufactured via AM at Dipartimento di Meccanica,
Politecnico di Milano
Riccardo Scimone
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Introduction

From complex objects to complex data

Mesh and Point Cloud data

Mesh and point cloud data are obtained by X-ray Computed Tomography on
the manufactured shapes
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Introduction

General Control Framework

produce objects Sj ,
j = 1, ...N on prototype P

Scan objects

Choose mesh
descriptors

Use descriptors
for quality control

Are defects correctly identified?

Design Control Chart

No

Yes
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Modeling defects and geometric deviations

Prototype vs manufactured part

Mesh and Point Cloud data

(a) NominalModel mesh (b) Geometrical
mismatch after ICP
algorithm

(c) Printed mesh

How should we capture all information about geometrical deviations?
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Modeling defects and geometric deviations

Hausdorff distance

With P we denote the prototype point cloud, with Sj the mesh of a
scanned object.

Natural Metric between sets

P, Sj ⊂ R3 geometrical setting

dSj (p) := min
s∈S

d(p, s) ∀p ∈ P deviation map from P to Sj

d j
P(s) := min

p∈P
d(s, p) ∀s ∈ S deviation map from Sj to P

dH(P,S) := max{max
p∈P

dSj (p), max
s∈S

d j
P(s)} Hausdorff distance

Metric between subsets of a metric space, naturally induced by the
metric space itself.

Riccardo Scimone
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Modeling defects and geometric deviations

Geometric interpretation

Defect characterization

Since dH(P, Sj) = 0 ⇐⇒ P = Sj , the couple of maps (dSj , d
j
P) fully

characterizes the geometrical differences between the point clouds.

The two maps generally carry different and complementary
information

In previous works, where simple objects and defects were
considered, only one deviation map is analyzed

The deviation maps are spatial functions with a different 3D
domain. Moreover, the d j

P have different domains and cannot be
directly compared.
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Modeling defects and geometric deviations

Example-complementarity of the maps

(a) Prototype (b) Defective-MS (c) map dSj (d) map d j
P

d j
P : Sj → R, d j

P(s) := minp∈P d(s, p) cannot see the defect in this
case (no points associated to high values of distance)

dSj : P → R, dSj (p) := mins∈S d(p, s), can!
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Modeling defects and geometric deviations

Example-complementarity of the maps

(a) Prototype (b) Defective-EM (c) map dSj (d) map d j
P

Here the situation is reversed!
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Modeling defects and geometric deviations

From Distance Maps to Densities

Summarizing maps for proper comparison

We abandon any spatial reference

dSj → fSj , density of distances of points of P from Sj

d j
P → f jP , density of distances of points of Sj from P

Two N-dimensional datasets, fS and fP , with a precise geometric
interpretation

Riccardo Scimone
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Modeling defects and geometric deviations

From Distance Maps to Densities

From N objects to 2N densities

(a) OOC-MS (b) OOC-EM
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(c) fP
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(d) fS

The initial dataset of 16 trabecular egg shells has been represented by two
datasets of probability densities. Densities are estimated via Bernstein
polynomials
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Modeling defects and geometric deviations

Why densities?

Natural extension of what is done in previous works (study of
moments, QQ-plots)

The mathematical theory is solid enough to extend SPC tools as
control charts

B2 Hilbert space of densities

B2(a, b) := {f : [a, b]→ IRmeasurable s.t. f > 0 , log f ∈ L2(a, b)},
f = g ⇐⇒ f = cg

f + g := fg , α · f := f α

〈f , g〉B2 = 1
2(b−a)

∫∫
log f (x)

f (y) log g(x)
g(y) dxdy

Riccardo Scimone
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Control Framework

Profile Monitoring of density functions

Summarizing a dataset of densities

For control, we need to build appropriate statistics:

PCA is consistently extended to Hilbert spaces and thus to B2

(SFPCA, Hron et al., 2016)

Standard PCA-based control can then be applied

Riccardo Scimone
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Control Framework

Profile Monitoring of density functions

Computing scores

Let (H,+, 〈·, ·〉) be Hilbert, {Xi}i=1,...N ⊂ H a dataset with zero mean
and sample covariance Σ, that is Σu = 1

N

∑
i 〈Xi , u〉Xi ∀u. Let

(λj , ζj)j=1,...N be the spectral decomposition of Σ, and zij = 〈Xi , ζj〉 the
scores. Fix K ∈ {1, ...,N − 1} suitably.

T 2
i =

∑K
j=1

z2ij
λj

measures the distance between the mean and the

reconstruction of Xi on the K -th principal subspace span(ζ1, ...ζK ),
taking into account the data variability

Q =
∑N

j=K+1 z
2
ij measures the Euclidean distance between the

mean and the part of Xi outside the first K−th principal subspace.

T 2 and Q are uncorrelated and can be used for control, as in
classical PCA-based control charts

Riccardo Scimone
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Control Framework

Control charts construction on real data

Two couple of charts

T 2 and Q charts for the fSj , j = 1, ...N densities.

T 2 and Q charts for the f jP , j = 1, ...N densities.

Control limits can be set empirically or via approximated results

An element is out of control if any of the four chart raises an alarm

Riccardo Scimone
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Control Framework

Control charts construction on real data

Control charts on fSj densities
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Control charts on f jP densities
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Control Framework

Simulations for power estimation

(a) 1 strut
missing

(b) 2 strut
missing

(c) 3 strut
missing
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(d) fSj
analysis

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Missing struts η

P
ow

er
 F

un
ct

io
n 

E
st

im
at

e

1 2 3 4

(e) f jP analysis
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(f) Overall
power

Other scenarios were explored, with very satisfactory results
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Conclusion

Final Remarks

A general strategy

The choice of the shape descriptors, in conjunction with the theory of
Hilbert spaces of densities allow us to:

Build a general framework for SPC on dataset of scanned objects,
regardless of their complexity or topological richness

Summarize the “defective” or “conformal” status of an object on
the basis of simple statistics

Design extensive simulation studies

Detect both widespread and very local defectiveness sources

Riccardo Scimone



21/21

Conclusion
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