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From traditional to Image based SPC/M

In Additive Manufacturing (AM) we typically move from mass
production to a single, custom made product, which is built layer by
layer, calling for a near continuous-time quality assessment.

Machine vision systems can be used to “look” at the part in each
layer, capturing fast and transient phenomena, while the layer is being
melted and solidified. Our goal is to detect anomalies and Out Of
Control (OOC) states in-situ and online, potentially triggering some
corrective action.

With highly customized products, we lack the ability of establishing a
traditional phase I “reference” behavior as we have a dynamically
changing setup. In-situ and online process monitoring by means of
video/image data shall then be combined with a novel way of
designing the control charts used to automatically signal any
departure from a natural, but dynamically changing, behavior.
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Image based SPC/M

The raw data will be video frames (images), whose resolution (i.e.
number of pixels per frame) and frequency (i.e. number of frames per
second) will depend on the camera.

The pixel values can be either univariate (gray-scale videos) or
three-variate (RGB videos).

Since a typical image consists of thousands/millions of pixels and we
usually have one/two orders of magnitudes of frames per second it is
clear that we talk about big volumes of data.

Here we will focus on gray scale video frame recordings, where for
every pixel we have a univariate integer value in the range
{0, 1, 2, . . . , 254, 255}, representing the gray level of the pixel.

With 0 (255) being the absolute black (white), we will have that
small pixel values (“dark pixels”) will refer to background, while large
pixel values (“bright pixels”) will refer to foreground.
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Image based SPC/M

The dynamic nature of such processes will provide for each frame,
pixel value distributions that are rather challenging to attack via
parametric modeling.

Taking into account all the above the non-parametric approach seems
to be the most promising.

In this spirit several authors attempted to solve the problem. Namely:

Wang and Tsung (2005) used the idea of testing with QQ-plots the
conformance of the new incoming frames against IC frames.

Menafoglio et. all (2018) suggested profile monitoring of the empirical
pdf in a Bayes-Hilbert space, to test agreement of an incoming frame
against IC patterns, established in phase I exercise.

Our proposal is to remain in the area of non-parametrics utilizing first
order stochastic dominance (FOSD) properties.
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Stochastic Dominance

First Order Stochastic Dominance

In the univariate setting, we say that a random variable X with cdf FX (·)
will be first order stochastic dominant over the random variable Y with

cdf FY (·), denoted as Y
sd
≤ X if:

FX (t) ≤ FY (t) ∀t ∈ R and ∃t∗ ∈ R such that: FX (t∗) < FY (t∗)

In case of first order stochastic dominance:

The cumulative distribution functions (cdfs) do not cross.

Y
sd
≤ X ⇒ E [Y ] < E [X ]

if h(·) is any bounded increasing function we have that:

Y
sd
≤ X ⇒ E [h(Y )] < E [h(X )]
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Stochastic Dominance
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Figure: An example of first order stochastic dominance (X dominates Y)
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Stochastic Dominance

Partial First Order Stochastic Dominance

We call partial stochastic dominance, when the concept of stochastic

dominance is restricted over a predetermined set A. We say Y
psdA
≤ X if:

FX (t) ≤ FY (t) ∀t ∈ A and ∃t∗ ∈ A such that: FX (t∗) < FY (t∗)

We will make use of the empirical cumulative distribution function
(ecdf) of all pixel values of each frame, to summarize the ongoing
“action” of a frame.

Using a phase I calibration to establish what is the IC ecdf behavior
and taking into account that OOC is considered as “excessive action”
compared to IC, we will utilize the use of partial first order stochastic
dominance (FOSD) properties to test (online during phase II), when
we move from the IC to the OOC state.
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ecdfs of extreme images
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Image based SPC/M

Using ecdfs we will attempt to slightly generalize the concept of
testing against an IC “prototype”. The idea of OOC performance in
the image based SPC/M that we consider in this study is reflected as
bigger “action” space (area) compared to what was established
during the IC phase I.

In other words we expect in OOC situations to have more pixels with
high values compared to the IC video sequence.

Generally speaking in the discrete pmf over {0, 1, 2, . . . , 254, 255} as
we move from an IC to an OOC frame “chunks” of probability mass
will travel from the smaller to the bigger values forcing the ecdf to be
moved to the right.
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IC versus OOC ecdfs
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IC and OOC ecdfs
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Image based SPC/M

We will make use of partial first order stochastic dominance, over a
set defined on the upper part of the of the support space
{0, 1, 2, . . . , 254, 255}. How will we decide on what will be this set?

In general, each frame will be partitioned in the:
“Foreground” area, where the action is taking place (related to the
high pixel values) and
“Background” area, where no significant action is observed, i.e. we can
think of it as the “quite” region of the frame (relates to the small pixel
values of the support set).

The “foreground” region can reflect the IC or OOC status of a frame.
Namely, if we will identify the “foreground subset” of the support
space, we expect an OOC ecdf to be partially stochastically greater
from the typical IC ecdf over this region. Making use of the partial
stochastic dominance properties we will expect to have smaller area
under the ecdf for an OOC frame, compared to the respective area of
an IC frame, over the “foreground subspace”.
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Image based SPC/M
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Image based SPC/M
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Image based SPC/M
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Image based SPC/M
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Image based SPC/M
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Area Under ecdf (AUecdf) control chart

Area Under ecdf control chart:

For each phase I IC frame derive the area under the ecdf over the
foreground subset Sf .

Use all estimated phase I Areai , i = 1, 2, . . . ,N (N = # of phase I IC
frames) and derive certain thresholds/quantiles (e.g. q0.0027),
depending on the false alarm tolerance we wish to have.

Plot these thresholds in a control type of chart, where on vertical axis
we have the Areai and on the horizontal axis the frame number.

Move to online phase II monitoring: for each new frame, derive its
ecdf and the respective area under the ecdf over Sf and plot this area
on the control chart. A point below the lower limit threshold will
indicate rejection of the IC scenario.
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Area Under ecdf (AUecdf) control chart
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Sandwich ecdf control chart
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Conclusions

A nonparametric approach utilizes the partial stochastic dominance to
derive two control charts (AUecdf and Secdf), which provide efficient
monitoring of video frames in additive manufacturing processes.

The suggested control charts are agnostic with respect to the product
that is built and simply require to employ a short phase I exercise.

The AUecdf is very robust even when very few frames are used for
phase I, while the Secdf needs a moderate number of phase I frames.

The new proposal outperforms the profile monitoring of pixel
intensities’ Q-Q plots alternative.

The suggested method can be generalized for other than additive
manufacturing performance (e.g. affective computing).
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The End

Thank you!
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