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Predictive Control Chart (PCC)

We will propose a self-starting Bayesian method, named Predictive
Control Chart (PCC). We will focus in detecting outlying
observations in short runs, while performing online monitoring.

PCC will utilize the available prior information (or adopt an objective
Bayesian approach in case of prior ignorance) and it will be formed as
a sequentially updated region based on the predictive distribution.

PCC will be introduced in a general form, allowing to handle data of
any univariate (discrete or continuous) distribution, as long as this
distribution is a member of the k-Parameter Regular Exponential
Family (k-PREF).
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PCC: statistical modeling

From a process under study, we sequentially obtain the data
X = (x1, . . . , xn), which we consider to be a random sample from the
distribution Xj |θ, a member of the k-PREF:

f (X |θ) =

 n∏
j=1

g(xj)

 [c(θ)]n exp


k∑

i=1

ηi (θ)
n∑

j=1

hi (xj)


Among the most prominent representatives in SPC/M are:

Xj |θ ∼ Binomial(Nj , θ),

Xj |θ ∼ Poisson(θ),

Xj |θ ∼ Normal(θ1, θ
2
2) etc.

Our main interest is in detecting in an online fashion and without
employing a phase I exercise, the presence of large transient shifts
(outliers) on the unknown parameter(s) θ.
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PCC: statistical modeling

For the prior, since in practice, historical data (of the same or a similar
process, not to be confused with phase I data) are typically available,
we recommend the use of power priors (Ibrahim and Chen, 2000):

π (θ|Y , α0, τ ) ∝ f (Y |θ)α0 π0 (θ|τ )

where Y = (y1, . . . , yn0) are the historical data, 0 ≤ α0 ≤ 1 is a scalar
parameter, π0 (θ|τ ) is the initial prior for the unknown parameter(s)
and τ is the vector of the initial prior hyperparameters.

From a subjective Bayesian point of view, π0(·) should reflect all
available information regarding the unknown parameter(s) before the
data become available, using prior knowledge, expert’s opinion etc.

From an objective Bayesian point of view we can adopt for π0(·) a
weakly informative or even non-informative initial prior, such as
flat/Jeffreys/reference/... prior.
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PCC: statistical modeling

To preserve closed form solutions, we suggest a conjugate prior for
π0 (θ|τ ), which always exists for any likelihood that is a member of
the k-PREF and its form is given by:

π0 (θ|τ ) = [K (τ )]−1 [c(θ)]τ0 exp

{
k∑

i=1

ηi (θ)τi

}

where θ ∈ Θ (parameter space) and τ = (τ0, τ1, . . . , τk) is the
(k + 1)-dimensional vector of the initial prior hyperparameters (reflect
the prior knowledge, ranging from highly informative to vague and
even non-informative choices).

A conjugate π0 (θ|τ ) will lead to a conjugate power prior of the form:

π (θ|Y , α0, τ ) ∝ π0 (θ|τ + α0tn0(Y ))
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PCC: statistical modeling

Then the posterior distribution of the unknown parameter(s) θ will be:

p (θ|X ,Y , α0, τ ) = π0 (θ|τ + α0tn0(Y ) + tn(X ))

while the predictive distribution of the single future observable Xn+1

will be:

f (Xn+1|X ,Y , α0, τ ) =
K (τ + α0tn0(Y ) + tn(X ) + t1(Xn+1))

K (τ + α0tn0(Y ) + tn(X ))
g(Xn+1)

PCC construction will be based on the predictive distribution and it
can start as soon as n = 2 and is based on the sequentially updated
form of the predictive distribution.

Precisely, we will determine an IC region, Rn+1, where the future
observable (Xn+1) will most likely be, as long as the process is stable
(i.e. no changes occurred).
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PCC: Highest Predictive Density/Mass (HPrD/M)

Assume the set Rc which contains the values of the predictive density
(or mass) function, which are greater than a threshold c , i.e.:

Rc = {xn+1 : f (xn+1|X ,Y , α0, τ ) ≥ c}

The HPrD/M region will be given by minimizing the absolute
difference of a highest predictive probability from a significance level
1− α, for all the possible values of c . Specifically:

Rn+1 = min
Rc

∣∣∣∣∣∣
∫
Rc

f (xn+1|X ,Y , α0, τ )− (1− α)

∣∣∣∣∣∣,
for the discrete case, we replace the integral sign by summation.

Rn+1 will be the shortest region with the smallest absolute difference
from the probability 1− α.
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PCC: Highest Predictive Density/Mass (HPrD/M)
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PCC: False Alarm Tolerance

The (predetermined) parameter 0 < α < 1 will reflect our tolerance
to false alarms and detection power.

The proposed PCC is a sequential (multiple) hypothesis testing
procedure, where at each time point n, the probability to raise a false
alarm is: P (Xn+1 /∈ Rn+1|IC ) = α.

We suggest two metrics in selecting α:

1 If we have a (known) fixed horizon of N data points and we wish to
bound the Family Wise Error Rate (FWER) by Šidák’s correction:

α = 1− (1− FWER)
1

N−1

2 If N is either unknown in advance or it is too large, then we suggest to
derive α using the metric of IC Average Run Length (ARL0):

α ≈ 1

ARL0
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PCC: Illustration and Decision Making
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PCC: Competing Methods and Sensitivity Analysis

We will compare the performance of the suggested PCC (Bayesian
parametric) against Q-chart.

We generate 100,000 iterations of N = 30 data points from the IC
states, which are: N (0, 1), P (2) and Bin (20, 0.1)

The OOC states represent isolated shifts of size {2.5 or 3}×sd, which
are introduced to the IC sequences at one of the locations: {5, or 15
or 25}.
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PCC: Competing Methods and Sensitivity Analysis

We will also examine the sensitivity of the PCC performance for
various prior settings.

For each setup, we will make use of two initial priors
(reference/objective and weakly informative) with the absence or the
presence of n0 = 10 historical data Y . Thus, we will have four
versions of PCC (with/without prior knowledge, with/without
historical data). The initial priors π0(·|τ ), which we will employ are:

Normal: reference prior π0

(
θ1, θ

2
2

)
∝ 1/θ2

2 ≡ NIG (0, 0,−1/2, 0) or the
weakly informative NIG (0, 2, 1, 0.8).

Poisson: reference prior π0 (θ3) ∝ 1/
√
θ3 ≡ G (1/2, 0) or the weakly

informative G (4, 2).

Binomial: reference prior π0 (θ4) ∝ 1/
√
θ4(1− θ4) ≡ Beta(1/2, 1/2) or

the weakly informative Beta(0.5, 4.5).
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PCC: Initial Priors (Sensitivity Analysis)
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PCC: Competing Methods and Sensitivity Analysis
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PCC Real Data Application (Medical Lab)

We will use data that come from the daily Internal Quality Control
(IQC) routine of a medical laboratory, monitoring “activated Partial
Thromboplastin Time” (aPTT), measured in seconds.

We gathered 30 daily normal IQC observations (Xi ) from a medical
lab. Notice that these data are based on control samples and in
regular practice will become available sequentially.

The goal is to accurately detect any transient parameter shift of large
size, as this will have an impact on the reported patient results. Thus,
it is of major importance to perform on-line monitoring of the process
without a phase I exercise.

We elicit the prior π0

(
θ1, θ2

2|τ
)
∼ NIG

(
29.6, 1/7, 2, 0.562

)
and we

had n0 = 30 historical data (from a different reagent).
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PCC Real Data Application (Medical Lab)

27 28 29 30 31 32

0
1

2
3

4
5 π0(θ1 | τ)

π(θ1 | Y, α0, τ)
p(θ1 | X, Y, α0, τ)

Mean

D
en

si
ty

θ1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

π0(θ2
2 | τ)

π(θ2
2 | Y, α0, τ)

p(θ2
2 | X, Y, α0, τ)

Variance

D
en

si
ty

θ2
2

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

28
29

30
31

32
33

Current Data

aP
TT

 [s
ec

]

−30 −20 −10 00 10 20 30

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●

Historical Data

PCC limits (informative prior)
PCC limits (reference prior)
FIR PCC limits

Bourazas K., Kiagias D, Tsiamyrtzis P. Predictive Control Charts (PCC) ENBIS-21 Spring Meeting, 05/18 16 / 21



PCC Real Data Application (Industrial Setting)

PCC illustration for discrete (Poisson) data. The data come from
Hansen and Ghare (1987) and were also analyzed by Bayarri and
Garćıa-Donato (2005).

They refer to the number of defects (xi ), per inspected number of
units (si ), encountered in a complex electrical equipment of an
assembly line.

We have 25 counts arriving sequentially that we will model using the
Poisson distribution with unknown rate parameter, i.e.
Xi |θ ∼ P (θ · si ).

In this data set neither prior information regarding the unknown
parameter nor historical data exist. Therefore, we use the reference
prior as initial prior for θ, i.e. π0(θ|τ ) ∝ 1/

√
θ ≡ G (1/2, 0) and we

also set α0 = 0 for the power prior term.
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PCC Real Data Application (Industrial Setting)
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Conclusions

We introduced the Predictive Control Chart (PCC) mechanism which
attempts to solve the online control/monitoring of phase I or short run
data, but can be used in phase II data as well. Specifically, PCC:

Offers axiomatic framework to incorporate prior information.

It is self-starting (i.e. free of phase I), allowing inference from the
second observable.

Outperforms frequentist’s based self starting and non-parametric
sequential methods.

It is general enough to be used in charting any type of data (discrete
or continuous) that belong to the k-PREF.

The present work has been published in the Journal of Quality
Technology at https://www.tandfonline.com/doi/full/
10.1080/00224065.2021.1916413?scroll=top&needAccess=true

A library in R has been developed and it is available via Github at
https://github.com/BayesianSPCM/BSPCM
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10.1080/00224065.2021.1916413?scroll=top&needAccess=true

A library in R has been developed and it is available via Github at
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The END

Thank you!
Questions?
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