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Etching in the Integrated Circuit (IC) fabrication
process

The IC fabrication process consists of a
sequence of physical and chemical steps
performed on a circular thin silicon slice,
called a wafer (W ).
Wafers are typically processed in lots.

During the process, silicon dioxide thin films
are deposited on the wafer surface mostly as
an electrical insulation between two
electrically active components of the chip.

To this end, a pattern of trenches is etched
on the silicon substratum.

Trench depth is expected to conform to specification limits and
depth variability with respect to these limits is typically
evaluated by appropriate indices
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Process Capability Indeces (PCI)

Y : a random variable representing the trench depth

PCI are statistics that measure the ability of an in-control
process to give values of Y within specification limits, hence
representing the natural variation of the production process

Cpk is a capability index routinely adopted in practice.
It can be calculated (Clements, 1989) by

Cpk = min(Cpu,Cpl) Cpu =
USL− ξ0.5
ξ0.9986 − ξ0.5

andCpl =
ξ0.5 − LSL

ξ0.5 − ξ0.00135

- LSL: lower specification limit

- USL: upper specification limit

- ξτ : τ -quantile of Y , τ ∈ (0, 1)
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Process Capability Indeces contd...)

- Cpk calculation requires many observations to estimate the
required quantiles with appropriate precision

- Cpk are often computed at the lot level pulling together
measures taken at different locations of the wafer and in
different wafers of a given lot

- In planar manufacts, it can be relevant to assess process
capability locally. In particular when the overall product
surface is parcelled into separate pieces to realise different
items. This is, in fact, the case of microchip production
since hundreds or thousands of dice are obtained from
each single wafer
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Local (spatial) Process Capability Indeces

{Y (s), s ∈W }: random field representing the output
measured at different spatial points of the wafer W

A local version of Cpk can be defined by

Cpk(s) = min{Cpu(s),Cpl(s)}

Cpu(s) =
USL− ξ0.5(s)

ξ0.9986(s)− ξ0.5(s)
and Cpl(s) =

ξ0.5(s)− LSL

ξ0.5(s)− ξ0.00135(s)

ξτ (s): τ -quantile of Y at location s ∈W , τ ∈ (0, 1)

In practice it is impossible to collect enough data to calculate
ξτ (s) for each s ∈W and some smoothing is required to
provide a Cpk spatial surface
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Mean, Median, Quantiles and Optimization

Y : (absolutely continuous) random variable with c.d.f. F (y)

m: scalar

- Expectation: E(Y ) = argminm E[(Y −m)2]

loss function `2: ρ(Y −m) = (Y −m)2

- τ -quantile: ξτ : F−1(ξτ ) = τ

ξτ = argminm E(ρτ (Y −m)), τ ∈ (0, 1)

loss function ρτ (u) =

{
τu if u > 0

(τ − 1)u if u ≤ 0

τ = 0.5 gives the median (`1 loss function)
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Conditional Mean, Quantiles and Quantile
Regression (QR)

x: p-vector of covariates.

By replacing m with x′β
• multiple regression ρτ (u) = ρ(u) = ||u||2

E(Y |x;β) = µ(x) = x′β

• quantile regression ρτ (u) = (τ − I (u ≤ 0))u
(Koenker and Bassett, 1979)

Qτ (Y |x;βτ ) = ξτ (x) = x′βτ

- τ = 0.5: median regression
- βτ depends on the quantile order, hence a separate

quantile model is obtained for each τ
pause

- x may incorporate binary variables as well as polynomial
transformations of numerical covariates May 18, 2021 8 / 27
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Parameter Estimation

((yi , xi ), i = 1, . . . , n): sample

• loss function `2: ρτ (u) = ρ(u) = ||u||2 → OLS

β̂ = argmin
β

n∑
i=1

(Yi − x′iβ)2

• loss function ρτ (u) = (τ − I (u ≤ 0))u

β̂τ = argmin
β

n∑
i=1

ρτ (Yi − x′iβτ )

Linear programming algorithms are used to fit the model
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General remarks

• Non-parametric

• Robustness

• Additive extensions are simply encompassed by this
framework
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Quantile Generalised Additive Model (qgam)

Quantile spatial field ξτ (s) is approximated by a bivariate spline

Sτ (s) =
k∑

j=1

Bj(s)βj,τ

Bj(s) j = 1, . . . , k is a (known) bivariate thin plate basis
function

βj ,τ j = 1, . . . , k are unknown coefficients

The τ -quantile spatial surface can be estimated at location s by

ξ̂τ (s) = Ŝτ (s) =
k∑

j=1

Bj(s)β̂j,τ
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Bayesian qgam

Loss function: extended log-f (ELF)

ρ̃τ (u) = (τ − 1)
u

σ
+ λ log

(
1 + e

u
λσ
)

• σ > 0: scale parameter

σ0σ(x) in case of relevant covariates x for the scale

• λ > 0: tuning parameter

An improper N(0,Ω) is used for β. Ω is p.s.d. precision matrix
depending on smoothing parameters γ.
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Bayesian qgam - estimation

The approach is based on the loss function (no probabilistic
model for the response)

Algorithms are used to performing the Bayesian update under
the ELF loss using a loss-based pseudolikelihood (Bissiri et al.
2019, Fasiolo et al. 2020).

The estimation procedure is composed by several routines

• σ0 is selected by minimizing a calibration loss function
numerically

• λ and σ(x) are estimated using close-form expressions

• smoothing parameters γ are selected by numerically
optimizing an intermediate criterion

• β are obtained using maximum a posteriori (MAP)
method keeping fixed the other parameters
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Spatial Cpk estimation via qgam

The Cpk surface can be by computing

Ĉpk(u) = min{Ĉpu(u), Ĉpl(u)}

Ĉpu(u) =
USL− ξ̂0.5(u)

ξ̂0.9986(u)− ξ̂0.5(u)
and Ĉpl(u) =

ξ̂0.5(u)− LSL

ξ̂0.5(u)− ξ̂0.00135(u)

over a fine grid of locations G = {u1, . . . uN : uj ∈W } prefixed on
the wafer area
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Numerical evidences

Scenario 1

- Simulation model: Y (s) ∼ LN(µ(s), σ(s))

- µ(s) and σ(s) are separately estimated from the lot data

- True Cpk(s) surface is obtained using actual USL and LSL of
the etching process

- Data are simulated at sampling monitoring grid of different size:
45 and 70 points

- Simulated data are used to estimate ξ(u) via qgam over a
prediction grid of 1876 points internal to the wafer area

- The exercise is repeated B=500 times and Ĉ b
pk(u) is computed

for each u ∈ G and b = 1, . . . ,B

- the average C̄pk(u) = B−1
∑B

b=1 Ĉ
b
pk(u) is computed for each

grid point u

Results are benchmarked using the Cpk(s) surface estimated via a
semi-parametric additive model for log-normal data
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Scenario 1: results
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Scenario 2: results - robustness to model
specification

Same as Scenario 1. Data simulated by a generalised T with df=9
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Scenario 3: results - robustness to outliers

Same as Scenario 1. Data are perturbed forcing δ% of outliers.
Outliers are generated by Unif (a, b) where
a: minimum of the values generated by the LN scheme
b: 5th percentile of the values generated by the LN scheme
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Assessing lot process capability: wafer data

Notation

S : sample grid with Card(S) = n = 38

L: set of wafers in the lot

M = 6: number of wafers in the lot

X

Y

 T
re

nc
h 

de
pt

h
G : prediction with Card(G ) = N = 648
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Assessing lot process capability: results - qgam Cpk

surfaces

Ĉpk(s) surface of each wafer of the lot
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Assessing lot process capability in wafer etching

- Process capability is typically assessed at the lot level.

- Wafers in the same lot may or may not be locally
homogeneous in their capability

- Local homogeneity of the process capability has to be
preliminary explored
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Assessing lot process capability: procedure

1 exclude wafer w from L and set L′ := L− w

2 estimate (qgam) Ĉw
pk(u) for each u ∈ G of wafer w

3 for each s ∈ S extract randomly one value out of M ′ = M − 1
available and obtain a new sample Y ∗ = {Y ∗(s1), . . . ,Y ∗(sn)}

4 calculate Ĉ∗pk(u) for each u ∈ G using Y ∗

5 repeat steps 3 and 4 B times, obtain (Ĉ b∗
pk (u), b = 1, . . . ,B)

and calculate the 5%-percentile C∗pk,0.05(u) for each u

6 Set I (u) = 1 if Ĉw
pk(u) < C∗pk,0.05(u) and 0 otherwise

7 if
∑

u∈G I (u)/N > δ = 0.20 set L := L′, M := M ′ and go to 1
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Assessing lot process capability: results - capability
map

The algorithm identifies two wafers with a ”significantly lower”
Cpk surface than ”average”

(a) Iteration 2: 28% of the wafer
area below C∗

pk,0.05(u)
(b) Iteration 5: 72% of the wafer
area below C∗

pk,0.05(u)
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Assessing lot process capability: results - capability
map

Process Capability per die in the two groups
Resampling is used to calculate a probability interval of local
Cpk at each location s ∈W (250 replicates)

Probability interval: 15th and 85th percentiles of Ĉpk(s)

wafer: 8, 15

< 1.33
Otherwise

(c) Wafer 8,15: 33% dice with
poor capability

wafer: 4, 11, 14, 19

< 1.33
Otherwise

(d) Wafer 4,11,14,19: 100%
dice with excelent capability
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Conclusions

Main points:

• a local estimate of the process capability based on additive
quantile regression suitable for spatial (planar) measures

• a procedure based on this estimate to assess homogeneity
of the process capability when items are produced in lots

• a procedure to assess local capability of the production
process at the lot level
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for your attention and comments
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