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Introduction

Design and Analysis of Computer Experiments:

→ physical experimentation for some complex engineering and
technological problems appears often too costly or, in some cases, also
impossible to be performed;
→ a computer code or simulator is run to depict the physical system under
study;
→ the complexity of the simulator requires an approximation of it through
a surrogate model that represent a valid approximation of the computer
code, acting as a statistical interpolator of the simulated input-output data
→ KRIGING (Krige, 1951; Sacks et al., 1989);
→ a key-point for computer experiments: the planning of the experimental
design;
→ space-filling designs.
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Cont’d

Space-filling designs:

→ spread the design points as uniformly as possible in order to observe the
response in the entire experimental region;
→ several types of space-filling designs have been developed in the literature by
also considering optimal designs (Pronzato and Müller, 2012);
→ Latin Hypercube (LH) designs, introduced by McKay et al. (1979), is one of
the most commonly used class of space-filling designs;
→ a LH design achieves the maximum uniformity when projected in any one
dimension. However, in practice, the design involves a large number of input
variables, and thus the uniformity should be achieved in more than one dimension.

A few types of LH designs:

→ orthogonal LH designs (Ye, 1998; Bingham et al., 2009);
→ maximin LH designs (Johnson et al., 1990; Joseph et al., 2015);
→ LH designs based on orthogonal arrays (Tang, 1993);
→ LH designs based on strong orthogonal arrays (He and Tang, 2013).
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Our proposal

A compelling approach for the design and analysis of computer
experiments:

→ a suitable LH design for the computer experiment through a new class
of orthogonal arrays, called strong orthogonal arrays (He and Tang, 2013);
→ main advantages of the proposed experimental design:

the achievement of very good space-filling properties;

a relatively low number of experimental runs.

→ analysis of the computer experiment through suitable Kriging models
with anisotropic covariance functions;
→ an empirical example based on a real case-study which further
demonstrate the validity of our proposal.
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Main theory

Orthogonal Array (OA):

An OA of strength t is an n × d matrix where the j-column has sj levels (1, 2, ..., sj ;
j = 1, ..., d), and it is such that for any n × t submatrix, each possible level combination
occurs with the same frequency (Tang, 1993; Hedayat et al., 1999). If
s1 = ... = sj = ... = sd = s, then the OA is symmetric and it is denoted by:

OA(n, d , s, t) (1)

→ Latin Hypercube design based on OA (OA-based-LH design) (Tang, 1993).

Strong Orthogonal Array (SOA):

A SOA of strength t is an n× d matrix with entries (1, ..., s t), such that any subarray of
g columns, for any g with 1 ≤ g ≤ t, can be collapsed into an OA
(n, g , su1 × ...× sug , g) for any positive integer u1, ..., ug with u1 + ... + ug = t (He and
Tang, 2013). We denote such an array as follows:

SOA(n, d , s t , t) (2)

→ Latin Hypercube design based on SOA (SOA-based-LH design) (He and Tang, 2013).
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Cont’d

Building a SOA-based-LH design:

Main steps (He and Tang, 2013):

1 define an OA according to the strength t; for example, if t = 2 then the OA
should be an OA (n, d , s, t), while if t = 3 then the OA should be an OA
(n, d + 1, s, t);

2 build a Generalized Orthogonal Array (GOA) (n, d , s, t) from the
corresponding OA defined at Step no.1;

3 from the GOA obtained in the previous step, construct the SOA with n rows,
d columns, st levels and strength t. Once the SOA is obtained, the
SOA-based-LH design could be generated. To this end, let λ be the index of
the SOA defined by λ = n

st .

4 for each column of the SOA, replace the λ entries for the level c
(c = 1, ..., st) by any permutation of (c − 1)λ+ 1, (c − 1)λ+ 2, ..., cλ;
lastly, the SOA-based-LH design is generated in the design space [0, 1)d

through the usual methods (Lin and Tang, 2015).
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Kriging: outlined theory

Universal Kriging:
Universal Kriging considers a non-constant trend function as follows (Krige, 1951; Sacks et al.,
1989):

yx = µ(x) + Z(x) (3)

µ(x) = f ′(x)β (4)

where f ′(x) = (f ′1 (x), ...., f ′m(x)) is a set of trend functions defined for each new point x , β is
the column vector [m × 1] of unknown parameters, and Z(x) identifies a spatial stochastic
process. By considering n selected points, F is defined as the model regression matrix of
dimension [n ×m] formed by the n independent functions f (x): F = (f (x1), ...., f (xn)).

E(Z(x)) = 0

Z(x) = Cov(Z(x),Z(x + h)) = σ2
yR(h;ω) (5)

where σ2
y is the process variance, e.g. the variance of Y , and ω is the vector of parameters

defining the stationary stochastic process for the correlation function R
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The Power Exponential covariance function and nugget
issues:

The Power exponential covariance function and nugget issues:

the Power exponential covariance function (Rasmussen and Williams, 2006):

R(h;ω) = exp
(
−

d∑
j=1

| hj |
φj

pj)
; j = 1, ..., d (6)

In formula (6) ω = (φ,p) where φ is the vector of characteristic length
scale parameters, while p is the vector related to the parameters of
smoothness, with 0 < pj ≤ 2;

the inclusion of a nugget coefficient allows to avoid instabilities during the
estimation (e.g. computational problems and jumps), and also account for
potentially possible deviations of inaccurate assumptions on the stationarity
of the process and on the chosen correlation function (Stein, 1999; Gramacy
and Lee, 2012).
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Empirical example based on a real case-study

Data and technical details:
the empirical example is performed by using the data in Nikiforova et al. (2021);

improve the payload distribution of freight trains in terms of in-train compression
and tensile forces. High compression forces can lead to train derailment, while high
in-train tensile forces may cause ”train disruption”;

Nikiforova et al. (2021) considered a freight train unloaded in five different

sections, where within each train section the payload distribution can be: uniform,

triangular or trapezoidal;

Input variables:

five inputs related to the shape of the payload distribution (one for each train
section), e.g. h = {h1, h2, h3, h4, h5} (Arcidiacono et al., 2017; Nikiforova et al.,
2021);

five inputs related to the position of maximum load (one for each train section),

e.g. x = {x1, x2, x3, x4, x5} (Arcidiacono et al., 2017; Nikiforova et al., 2021);
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The SOA-based-LH design:

starting from a symmetric OA (64, 11, 2, 3), a GOA (64, 10, 2, 3) is built, and
the final SOA (64, 10, 23, 3) is obtained (Nikiforova et al., 2021);

the SOA-based-LH design space-filling properties: a stratification on a
2× 2× 2 grid in any three-dimensional projection, and, in addition, on the
finer grids of 22 × 2 and 2× 22 in any two-dimensional projection.

Output variables:

Three in-train forces: i) compression forces computed at 2m, ii) compression
forces computed at 10m, and iii) tensile forces computed at 2m. The true values
of compression and tensile forces are calculated through the TrainDy software
(Cantone, 2011), internationally certified for the computation of in-train forces of
freight trains.
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Kriging modelling:

Trend function, Power exponential covariance function and nugget
issues:

for each output variable, a Kriging model is estimated through the R
package DiceKriging (Roustant et al., 2012);

trend function: first order polynomial trend, plus the quadratic effects
related to the position of maximum load, and the interaction terms between
the position of maximum load and the shape of the payload distribution,
strictly related to the same train section;

the Kriging models are estimated by considering the anisotropic Power
exponential covariance function, formula (6);

a nugget term δ is also estimated;

the validation of the Kriging models is performed through the leave-one-out
cross validation method.
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Kriging modelling results

Three goodness-of-fit measures for evaluating the estimated Kriging
models:

-Q2: the Q2 predictivity coefficient;
-SE-LOO: the standard error of the leave-one-out residuals;
-RMSE-LOO: the root mean square error of the leave-one-out residuals.

Table 1: Goodness-of-fit measures for each estimated Kriging model

2m Compression 10m Compression 2m Tensile
forces forces forces

Q2 0.8561 0.8426 0.9226
SE-LOO 0.8017 0.7636 0.7642

RMSE-LOO 0.0197 0.0179 0.0009
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Cont’d

Figure 1: Compression Forces at 2m: Goodness of fit with leave-one-out method.
The three plots presented are as follows: the residuals (top), the standardized
variance of residuals (middle) and the Normal QQ plot of the residuals (bottom).
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Figure 2: Compression Forces at 10m: Goodness of fit with leave-one-out method.
The three plots presented are as follows: the residuals (top), the standardized
variance of residuals (middle) and the Normal QQ plot of the residuals (bottom).
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Figure 3: Tensile Forces at 2m: Goodness of fit with leave-one-out method. The
three plots presented are as follows: the residuals (top), the standardized variance
of residuals (middle) and the Normal QQ plot of the residuals (bottom).
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Conclusions

In this talk, we have presented a compelling approach for the design
of computer experiments based on SOAs;

the obtained SOA-based-LH design allows to achieve very good
space-filling properties with a relatively low number of experimental
runs and small computational efforts;

the analysis of the computer experiments, performed through suitable
Kriging models with anisotropic covariance functions, provides very
satisfactory results confirming that the suggested approach could be
successfully applied for solving similar technological problems;

the choice of the covariance function is a key-point which should be
further investigated in details.
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Appendix

Generalized Orthogonal Array - GOA (He and Tang, 2013):

Let us consider a matrix B of dimension n× dt. The matrix B is such that
the dt columns are arranged in d groups, i.e. B = B1, ...,Bd; each group
Bj, j = 1, ..., d , is in turn composed of t columns, i.e. Bj = bj1, ...,bjt.
The matrix B is called a GOA of size n, with d constraints, s levels and
strength t if the sub-matrix B∗ consisting of t columns bi′j′ , where
i ′ = i ′1, ..., i

′
g and j ′ = 1, ..., ui ′ , is an OA with strength t for any

1 ≤ g ≤ t, any 1 ≤ i ′1 < ... < i ′g ≤ d , and any positive integer u1, ..., ug
with u1 + ...+ ug = t. Such an array is denoted by:

GOA(n, d , s, t) (7)
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