A measure of expected agreement between independent classifiers*

Emil Bashkansky

Yariv N. Marmor

BRAUDE College of Engineering, Karmiel

University of Piraeus - ENBIS 2025 17/09/2025

^{*}The topic of our report is essentially a continuation of the study metrological aspects of classification systems, the results of which were presented at the previous annual ENBIS conference and published earlier this year in Gadrich, T.; Marmor, Y. N.; Bashkansky, E. (2025) Accuracy of Categorical Measurements: Nominal Scale. *Measurement*, 250, 117044

The Purpose of the Presentation

To propose the new measure of estimating inter-classifiers agreement based on metrological characteristics of classification system only, when classification is provided by several collaborators (classifiers) according to fixed and random model of

their selection.

Brief "roll back" to the previous presentation

"Classification of the analyzed property value of the objects under study (OUS) into one of K exclusive categories forming a comprehensive spectrum (scale) of the studied property will be considered as categorical measurement." (*)

Note 1: The results of classification are presented by so-called categorical data. In cases where the spectrum of possible values consists only of two categories such data are binary, and the appropriate activity is also often called *testing*.

Note 2: In this presentation categories are not ordered (nominal scale)

* T. Gadrich, E. Bashkansky, (2016) "A Bayesian approach to evaluating uncertainty of inaccurate categorical measurements", *Measurement* 91, 186–193.

Examples of *Classifiers* (K > 2)

Coins sorting machine

Egg classification machine

Plastic color sorting machine

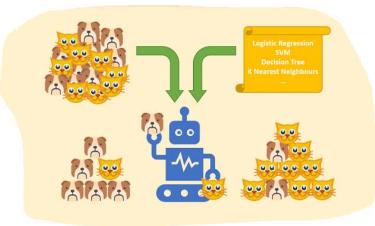
Google language detector

Musical tone recognition

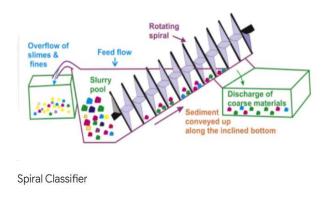
Examples of *Binary Classifiers* (K = 2)

EMAIL FILTER

inbox Spam


Pregnancy tester

Spam filtering


Counting machine: bank notes are classified as forged or accepted

Covid - 19 tester

Classification algorithm

Spiral classifier

Ability of a single classifier

The conditional probabilities that an object will be classified as category k, given that its actual/true category

is
$$i - P_{k|i}$$

$$1 \le i, k \le K;$$
 $\sum_{k=1}^{K} P_{k|i} = 1$

Ideal classifier: every $P_{k|i} = 0$, except of $P_{i|i} = 1$

Classification (Confusion) Matrix and Repeatability for the General Case of K Categories

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

$$\textbf{Repeatability} (variation) = \begin{bmatrix} Repeatability_1 \\ Repeatability_2 \\ ... \\ Repeatability_i \\ ... \\ Repeatability_{\nu} \end{bmatrix} - (for the same classifier)$$

$$Repeatability_{i} = \frac{{}^{K}}{{}^{K-1}} \sum_{k=1}^{K} \left[p_{k|i} \cdot \left(1 - p_{k|i} \right) \right] = \frac{{}^{K}}{{}^{K-1}} (1 - \sum_{k=1}^{K} p_{k|i}^{2}) = VAR_{within}$$

$$0 \le VAR_{within} \le 1$$

The <u>closeness between classifications abilities</u> of <u>different and</u> independent <u>classifiers</u> participating in collaborative study (from here on - <u>Classifiers effect</u>)

$$\textit{Classifier effect}_1 \\ \textit{Classifier effect}_2 \\ \cdots \\ \textit{Classifier effect}_i \\ \cdots \\ \textit{Classifier effect}_K \end{bmatrix}$$

Where: Classifiers effect_i = $\frac{K}{K-1}\sum_{k=1}^{K} VAR(p_{k|i})$

 $VAR\left(p_{k|i}\right)$ = classic variation of $p_{k|i}$ between L collaborators/classifiers

CATANOVA (L classifiers)

$$\begin{aligned} & \text{Total Variation}_i = \frac{K}{K-1} \sum_{k=1}^K \overline{p}_{k|i} (1-\overline{p}_{k|i}) = \frac{K}{K-1} \Bigg(1 - \sum_{k=1}^K \overline{p}_{k|i}^{\ 2} \Bigg), \\ & \text{where } \overline{p}_{k|i} = \frac{\sum_{1}^L \overline{p}_{k|i}^{(l)}}{L} \end{aligned}$$

can be split to the *intra* and *inter* components:

Total Variation_i = $(Mean repeatability variation)_i + (Classidiers' effect variation)_i$

Uniform kappa index of agreement between two classifiers

$$\kappa = \frac{P_a - P_{a|Chance}}{1 - P_{a|Chance}}$$

$$P_{a|Chance} = \frac{1}{K}$$

In case of two classifiers, this means that one or both made maximally random, blind, and uninformative classifications.

$$1 = \kappa \ge -\frac{1}{K-1}$$

The agreement thus defined satisfies a very important superposition principle (*), i.e: "the overall kappa is the weighted sum of partial categories kappa-s, where the "weight" of every category is the probability of an OUS to belong to this category (or its proportion in the classified population)".

(*) E. Bashkansky, T. Gadrich, "Some metrological aspects of the comparison between two ordinal measuring systems", *Accreditation and Quality Assurance*, Vol. 16, pp. 63-72, 2011

Uniform kappa index of agreement – dependence on K

$$\kappa = \frac{P_a - P_{a|Chance}}{1 - P_{a|Chance}}$$

$$P_a = 0.5; \ P_{a|Chance} = \frac{1}{K} \Rightarrow \kappa = \frac{0.5 - \frac{1}{K}}{1 - \frac{1}{K}}$$

When a half of all items are classified identically:

K	2	3	4	5	6	7	8	9	10	20	100
K	0	0.25	0.33	0.38	0.4	0.42	0.43	0.44	0.44	0.47	0.5

"THE MORE CATEGORIES ARE IN THE SPECTRUM, THE HARDER IT IS TO GUESS"

Expected partial kappa index of agreement between <u>two</u> independent classifiers

Assuming that:

$$\overline{P}_{a|i} = \sum_{k=1}^{K} P_{k|i}^{(1)} \cdot P_{k|i}^{(2)} = \overline{P_{i}^{(1)}} \cdot \overline{P_{i}^{(2)}}$$

It is possible to prove, that:

$$\kappa_{i} = \frac{\overline{P}_{a|i} - P_{a|Chance}}{1 - P_{a|Chance}} = \frac{\overline{P}_{a|i} - \frac{1}{K}}{1 - \frac{1}{K}} =$$

 $= 1 - (Total variation)_i - (Classifiers'effect variation)_i$

and by virtue of the superposition principle:

$$\kappa = 1 - \text{(Total variation)} - \text{(Classifiers'effect variation)}$$

or alternatively:

$$\kappa = 1 - (\text{Repeatability variation}) - 2 \cdot (\text{Classifiers'effect variation})$$

Expected partial and general kappa index of agreement between L independent classifiers

Assuming that:

$$\overline{P}_{a|i} = \frac{2}{L(L-1)} \sum_{l'>l}^{L} \sum_{l}^{L} \overline{P_i^{(l')}} \cdot \overline{P_i^{(l')}}$$

It is possible to prove, that:

$$\kappa_i = 1 - (\text{Total variation})_i - \frac{1}{L-1} (\text{Classifiers'effect variation})_i \equiv 1 - (\text{Repeatability variation})_i - \frac{L}{L-1} (\text{Classifiers'effect variation})_i$$

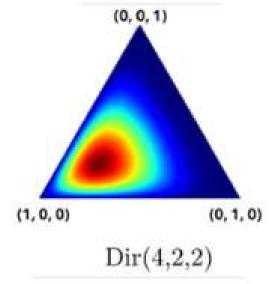
and by virtue of the superposition principle which is valid for every mutual agreements:

$$\kappa = 1 - \text{(Total variation)} - \frac{1}{L-1} \text{(Classifiers'effect variation)} \equiv 1 - \text{(Repeatability variation)} - \frac{L}{L-1} \text{(Classifiers'effect variation)}$$

```
Enter the number of Categories (K): 2
Enter the number of Categories (K): 2
                                                          Enter the number of Classifiers (L): 2
Enter the number of Classifiers (L): 2
Enter probabilities for Classifier number 1:
                                                          Enter probabilities for Classifier number 1:
                                                          Enter probability for Category 1: 1
Enter probability for Category 1: 1
                                                          Enter probability for Category 2: 0
Enter probability for Category 2: 0
                                                          Probabilities for Classifier 1 entered successfully.
Probabilities for Classifier 1 entered successfully.
                                                          Enter probabilities for Classifier number 2:
Enter probabilities for Classifier number 2:
                                                          Enter probability for Category 1: 0
Enter probability for Category 1: 1
Enter probability for Category 2: 0
                                                          Enter probability for Category 2: 1
                                                          Probabilities for Classifier 2 entered successfully.
Probabilities for Classifier 2 entered successfully.
                                                          Entered probability table:
Entered probability table:
                                                          [[1. 0.]
[[1. 0.]
                                                           [0. 1.]]
 [1. 0.]]
                                                          --- Results ---
--- Results ---
Agreement value = 1.0000
                                                          Agreement value = -1.0000
                                                          Repeatability = 0.0000
Repeatability = 0.0000
                                                          ClassifiersEffect = 1.0000
ClassifiersEffect = 0.0000
Total_Variation = 0.0000
                                                          Total_Variation = 1.0000
                                                          Enter the number of Categories (K): 2
Enter the number of Categories (K): 2
                                                          Enter the number of Classifiers (L): 2
Enter the number of Classifiers (L): 2
Enter probabilities for Classifier number 1:
                                                          Enter probabilities for Classifier number 1:
Enter probability for Category 1: 0.5
                                                          Enter probability for Category 1: 1
Enter probability for Category 2: 0.5
                                                          Enter probability for Category 2: 0
Probabilities for Classifier 1 entered successfully.
                                                          Probabilities for Classifier 1 entered successfully.
Enter probabilities for Classifier number 2:
                                                          Enter probabilities for Classifier number 2:
Enter probability for Category 1: 0.5
                                                          Enter probability for Category 1: 0.5
Enter probability for Category 2: 0.5
                                                          Enter probability for Category 2: 0.5
Probabilities for Classifier 2 entered successfully.
                                                          Probabilities for Classifier 2 entered successfully.
Entered probability table:
                                                          Entered probability table:
[[0.5 0.5]
                                                          [[1. 0.]
 [0.5 0.5]]
                                                           [0.5 0.5]]
--- Results ---
                                                          --- Results ---
Agreement value = 0.0000
                                                          Agreement value = 0.0000
Repeatability = 1.0000
                                                          Repeatability = 0.5000
ClassifiersEffect = 0.0000
                                                          ClassifiersEffect = 0.2500
Total_Variation = 1.0000
                                                          Total Variation = 0.7500
```

Random Dirichlet Model

 \square L classifiers are randomly sampled from the population which classification abilities related to category i are distributed according to the Dirichlet distribution:


$$f(p_{1|i}, p_{2|i}, \cdots, p_{K|i}) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} p_{k|i}^{\alpha_{k|i}-1} \qquad (\sum_{k=1}^{K} p_{k|i} = 1)$$

where: $\alpha_i = (\alpha_{1|i}, \alpha_{2|i}, \dots, \alpha_{K|i})$ - parameters of the Dirichlet distribution

characterizing the i-th category classification;

$$E\left(p_{k|i}\right) = \alpha_{k|i}/\left(\alpha_{0|i}\right);$$

$$\alpha_{0|i} = \sum_{k=1}^{K} \alpha_{k|i}$$
 - concentration parameter (*)

* Location is determined by repeatability, and dispersion $(\alpha_{0|i})$ is determined by degree of variation between classifiers.

Repeatability (within) and Classifiers (betweenclassifiers) effect

$$Repeatability_{i} = \frac{K}{K-1} \sum_{k=1}^{K} E[p_{k|i} \cdot (1 - p_{k|i})] = \frac{K}{K-1} \frac{\alpha_{0|i}}{\alpha_{0|i}+1} \left[1 - \sum_{k=1}^{K} \frac{\alpha_{k|i}^{2}}{\alpha_{0|i}^{2}} \right]$$

$$\textit{Classifier effect}_i = \frac{K}{K-1} \sum_{k=1}^K VAR \left(p_{k|i} \right) = \frac{K}{K-1} \frac{1}{\alpha_{0|i}+1} \left[1 - \sum_{k=1}^K \frac{\alpha_{k|i}^2}{\alpha_{0|i}^2} \right] = \frac{\textit{Repeatability}}{\alpha_{0|i}}$$

Disagreement value_i =
$$\frac{K}{K-1} \left[1 - \sum_{k=1}^{K} \frac{\alpha_{k|i}^2}{\alpha_{0|i}^2} \right] (1 + \frac{1/(L-1)}{(\alpha_{0|i}+1)}) = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \left[\frac{\alpha_{0|i}^2}{\alpha_{0|i}^2} \right] (1 + \frac{1}{2} \left[\frac{\alpha_{0$$

= Total precision variation $\cdot \left[1 + \frac{1}{(L-1)} \frac{1}{(\alpha_{0|i}+1)}\right]$

$\alpha_{0 i} \rightarrow 0$	$\alpha_{0 i} \rightarrow \infty$
Repeatability = 0	Classifiers effect =0
Disagreement value _i	Disgreement value _i
$= \frac{L}{L-1} \frac{K}{K-1} \left[1 - \sum_{k=1}^{K} \frac{\alpha_{k i}^2}{\alpha_{0 i}^2} \right]$	$= \frac{K}{K-1} \left[1 - \sum_{k=1}^{K} \frac{\alpha_{k i}^2}{\alpha_{0 i}^2} \right]$

How will the results of a war with Iran affect the Abraham Accords?

(a poll conducted shortly after the end of the 12-day war)

- 1. The circle of countries that have signed the Abraham Accords will expand: 54%
- 2. The circle of countries that have signed the Abraham Accords will shrink: 3%
- 3. Nothing will change: 37%
- 4. I find it difficult to answer: 6%

Total Votes: 6935

Agreement value = $1 - (4/3)[1 - (0.54^2 + 0.03^2 + 0.37^2 + 0.06^2) = 0.244$

(Fleiss' kappa -0.282)

Comparison

	Question	Fleiss' score	Proposed score
	Is expected agreement expressed directly		
1	through the precision characteristics of the	No	Yes
	classification system?		
	Whether total score is a weighted sum of	No	Yes
2	partial (category-specific) ones?	(prevalence paradox)	(no prevalence paradox)
3	If we add one more classifier to a group of		
	classifiers whose classifications coincide	Kappa score will	Proposed will
	with the average values of this group, how	decrease	increase
	will the expected agreement change?		
	What is the agreement score for 100		
4	classifiers, 99 of which systematically point		Proposed is
	to the first category and only one	Approximately	approximately
	systematically points to the second?	0.0101	0.96

Summary

- 1. The agreement between classifiers is important whenever the consistency, reliability and trustworthy of judgment are crucial for data quality and decision-making, especially where the cost of false output is high.
- 2. This agreement is directly related to the metrological characteristics of the precision of the classification system, its *intra* and *inter* (R&R) components.
- 3. The proposed measure of agreement satisfies the superposition principle, i.e. the overall measure is the weighted sum of partial categories measures.
- 4. For a sufficiently large number of classifiers, the proposed measure of *disagreement* simply coincides with the total precision variation of the classification system.
- 5. In the absence of general agreement, the authors plan to investigate the possibility of using the proposed measure to solve the problems of classifiers' clustering.

Thank You for Your Attention!

E-mail: ebashkan@braude.ac.il

Link to the Tool:

https://drive.google.com/file/d/1WpqpgcBJ_QhqCgVnlc1yaB QYbKEYIXnd/view?usp=sharing

20