The Diminishing Returns of
Forecasting Models” Complexity
in Industrial Applications



Research Hypothesis / Assumptions

o Complex Models vs. System Performance
Predictive models focus on specific system components. Yet they may not

significantly impact overall system performance.

o Internal Variability
Real-system complexity introduces variability that diminishes advantages of

sophisticated models.

o Tailored Implementation

Tools must be matched to specific goals and working environments.



Example / Motivation

o Worker has daily task that must be finished within 8 hours in order to be consider
as succesful. She wants to better schedule her tasks.
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A Good prediction but no help in scheduling (assuming all tasks are needed).



Prediction (Regression) Models — Literature review

o Machine Learning Approaches o Deep Learning Methods

Decision Tree (DT) * Deep Convolutional Neural
Adaptive Boosting model (AdaBoost) Networks

Logistic Regression (LR) (DCNN)

Stochastic Gradient Descent (SGD) * Generative Adversarial
Random Forest (RF) Network (GAN)

Gradient Boosting classifier (GBM) * Sequential model

Extra Tree Classifier (ETC) * And more...

Gaussian Naive Bayes (G-NB)
Support Vector Machine (SVM)



Prediction (Regression) Models — Literature review

o Common Prediction Metrics o Machine Learning Applications
* R-squared (R?) * Scheduling and resource
e Mean Absolute Error (MAE) allocation
» Mean Squared Error (MSE) * Process monitoring and KPI
tracking

Root Mean Squared Error (RMSE)

Mean Absolute Percentage Error
(MAPE)

* Quality prediction and
improvement

e Maintenance needs
1dentification



Research Methodology

. System Analysis:
Identify what needs to be predicted to improve system performance.

. Metric Selection:
Determine crucial operational metrics for the organization.

. Tool Selection:
Choose appropriate prediction tools with varying complexity levels.

. Problem Solving:
Apply prediction estimators and calculate system performance.

. Comparison:
Compare performance across different complexity levels.



Case Study Design

o Data Generation
32 production duration groups (5 Boolean columns) across 100,000 items. Normal
distribution with varying means and standard deviations starting from ({20,0.5},{10,2}) and

increase by steps. 5 dummy Boolean columns (to allow overfitting).
o Predictive Models

* Decision Tree Model: Full tree generated and pruned to varying sizes. Predictions saved

for each item across all tree sizes

* Deep Learning Model: Performed deep learning training with a range of training

iterations (epochs) to optimize model performance

o Performance evaluation to minimize average waiting time (SPT — shortest process time first):

Random selection of 10 Items. Sorting by expected duration. 1000 replications (items mix).
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Model Complexity vs. Accuracy - Diminishing Returns

Decision Tree Model

R-squared increases i
with model complexity.
(number of leaves) But
gains diminish after
certain threshold.
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Model Complex1ty VS. Accuracy Dlmlmshmg Returns

Deep Learning Model

*R-squared increases
with model complexity
(number of training
rounds). But gains

diminish after certain
threshold.

*Number of training
rounds takes more time
and more “predictors”

*(25 repetitions)
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Waiting Time Evaluation (simple example with 4 1tems)

Sort by F1
Index|F1 |/ F2| D
1 121]18|20
2 126/28|30
3 120]22|35
4 132125|25
Sort by F2

F1- Forecast 1

F2 — Forecast 2

D — Actual Duration
X — delayed items
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Waiting Time (F1) = 3*35+2*%20+1*30+0%25=
175

Waiting Time(mean)=(175+155)/2=165
— Norm Waiting Time (F1)=175/165=1.06
— Norm Waiting Time (F2)= 155/165=0.94

Waiting Time (F2) = 3%*20+2*35+1*25+0*30=
155



Waiting Time Results - High Variability Environment (u=10, 6=2)
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Waiting Time Results - Low Variability Environment (u=20, 6=0.2)

Decision Tree Model Deep Learning Model
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Waiting Time Results - by Variability Environment (summary)
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Insights:

Higher R? in a low
variability environment.
Deep learning
“complex” models
impact wait time more
in high variability
environment.

The decision tree
impact wait time more
in low variability
environment.



Research Implications

o Bridging the Gap
Connects statistical solutions with business impact for complex systems.

o Practical Guidelines

Guide practitioners toward appropriate tools based on system characteristics.

o Integration Innovation
Combining prediction, optimization, and simulation creates innovative

operational



Thank You for
your attention!

Code used in this presentation:

Deep Leaning Model
https://drive.google.com/file/d/1IIWIdIMM8w8alPQKbjEurVOFySFX
Ee6Q/view?usp=sharing

Decision Tree (CART):

https://drive.google.com/file/d/1ktlzY8l TobeobRGbHW2pAjBWt2M
mDCo/view?usp=sharing

E-mail: myariv@braude.ac.il



