The Diminishing Returns of Forecasting Models' Complexity in Industrial Applications

Piraeus, Greece - ENBIS 2025 16/09/2025, 09:40

Yariv N. Marmor (BRAUDE - College of Engineering, Karmiel)

Research Hypothesis / Assumptions

Complex Models vs. System Performance

Predictive models focus on **specific** system components. Yet they may not significantly impact **overall** system performance.

Internal Variability

Real-system complexity introduces variability that diminishes advantages of sophisticated models.

Tailored Implementation

Tools must be matched to specific goals and working environments.

Example / Motivation

 Worker has daily task that must be finished within 8 hours in order to be consider as successful. She wants to better schedule her tasks.

A Good prediction but no help in scheduling (assuming all tasks are needed).

Prediction (Regression) Models – Literature review

- o Machine Learning Approaches
- Decision Tree (DT)
- Adaptive Boosting model (AdaBoost)
- Logistic Regression (LR)
- Stochastic Gradient Descent (SGD)
- Random Forest (RF)
- Gradient Boosting classifier (GBM)
- Extra Tree Classifier (ETC)
- Gaussian Naive Bayes (G-NB)
- Support Vector Machine (SVM)

- o Deep Learning Methods
- Deep Convolutional Neural Networks (DCNN)
- Generative Adversarial Network (GAN)
- Sequential model
- And more...

Prediction (Regression) Models – Literature review

- o Common Prediction Metrics
- R-squared (R²)
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error (MAPE)

- Machine Learning Applications
- Scheduling and resource allocation
- Process monitoring and KPI tracking
- Quality prediction and improvement
- Maintenance needs identification

Research Methodology

- 1. System Analysis: Identify what needs to be predicted to improve system performance.
- 2. Metric Selection:
 Determine crucial operational metrics for the organization.
- 3. Tool Selection:
 Choose appropriate prediction tools with varying complexity levels.
- 4. Problem Solving:
 Apply prediction estimators and calculate system performance.
- 5. Comparison:
 Compare performance across different complexity levels.

Case Study Design

Data Generation

32 production duration groups (5 Boolean columns) across 100,000 items. Normal distribution with varying means and standard deviations starting from ({20,0.5},{10,2}) and increase by steps. 5 dummy Boolean columns (to allow overfitting).

Predictive Models

- <u>Decision Tree Model</u>: Full tree generated and pruned to varying sizes. Predictions saved for each item across all tree sizes
- <u>Deep Learning Model</u>: Performed deep learning training with a range of training iterations (epochs) to optimize model performance
- Performance evaluation to minimize average waiting time (SPT shortest process time first):
 Random selection of 10 Items. Sorting by expected duration. 1000 replications (items mix).

Item Duration Distribution

Low Variability (μ =20, σ =0.5)

High Variability (μ =10, σ =2)

Model Complexity vs. Accuracy - Diminishing Returns

Decision Tree Model

R-squared increases with model complexity. (number of leaves) But gains diminish after certain threshold.

Model Complexity vs. Accuracy - Diminishing Returns

Deep Learning Model

- •R-squared increases with model complexity (number of training rounds). But gains diminish after certain threshold.
- •Number of training rounds takes more time and more "predictors"
- •(25 repetitions)

10

Waiting Time Evaluation (simple example with 4 items)

Sort	hw	T 1
Sort	DV	Γ I

Index	F1	F2	D
1	21	18	20
2	26	28	30
3	20	22	35
4	32	25	25

Sort by F2

F1- Forecast 1 F2 - Forecast 2

D – Actual Duration

X – delayed items

Index	F1	F2	D	X
3	20	22	35	3
1	21	18	20	2
2	26	28	30	1
4	32	25	25	0

Waiting Time (F1) = 3*35+2*20+1*30+0*25= 175

Waiting Time(mean)=(175+155)/2=165

- \Rightarrow Norm Waiting Time (F1)= 175/165=1.06
- **⇒ Norm Waiting Time (F2)= 155/165=0.94**

Index	F1	F2	D	X
1	21	18	20	3
3	20	22	35	2
4	32	25	25	1
2	26	28	30	0

Waiting Time (F2) = 3*20+2*35+1*25+0*30= 155

Waiting Time Results - High Variability Environment (μ =10, σ =2)

Decision Tree Model

Statistical significance only in configurations with **2 groups** or fewer.

Deep Learning Model

Statistical significance only in configurations with **3 rounds** or fewer.

Waiting Time Results - Low Variability Environment (μ =20, σ =0.2)

Decision Tree Model

Statistical significance only in configurations with **6 groups** or fewer.

Deep Learning Model

Statistical significance only in configurations with **6 rounds** or fewer.

Waiting Time Results - by Variability Environment (summary)

Decision Tree Model

Deep Learning Model

Insights:

- Higher R² in a low variability environment.
- Deep learning
 "complex" models
 impact wait time more
 in high variability
 environment.
- The decision tree impact wait time more in low variability environment.

Research Implications

Bridging the Gap

Connects statistical solutions with business impact for complex systems.

Practical Guidelines

Guide practitioners toward appropriate tools based on system characteristics.

Integration Innovation

Combining prediction, optimization, and simulation creates innovative operational

Thank You for your attention!

Code used in this presentation:

Deep Leaning Model

https://drive.google.com/file/d/1||W|d9MM8w8alPQKbjEurV0FySFXEe6Q/view?usp=sharing

Decision Tree (CART):

https://drive.google.com/file/d/1ktlzY8I TobeobRGbHw2pAjBWt2MmDCo/view?usp=sharing

E-mail: myariv@braude.ac.il