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Chemometric applications in the food industry (Fruit as an example)

NIR + Chemometrics → Non-destructive, cheap methodology and fast acquisition times are attractive points for food quality control

PREDICTED PROPERTIES:

▪ Dry matter content

▪ SSC (Soluble Solid Content)

▪ Firmness, Acidity, Protein, etc…

▪ Origin control

VARIABILITY SOURCES in DATA:

▪ Biological variability (chemistry)

▪ Harvest season (weather, fertilization, etc.)

▪ Measurement conditions (temperature, 

spectrometer, etc.)

▪ NIR (mostly overtones), low signal

Typical chemometric analysis pipeline
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Literature supported claims of CNN advantages in NIR Chemometrics

CNN tend to outperform many traditional (linear) methods (PLS, SVM, MLR, etc.) especially in the presence of 
complex spectra (e.g. biological samples, food products, etc.). 

The 4 reviews below present several tens of examples…

“J. Walsh et al 2023, Review: The evolution of chemometrics coupled with near infrared spectroscopy for fruit 

quality evaluation…, JNIR 2023, Vol. 31(3) 109–125,  https://doi.org/10.1177/09670335231173140 “

“X. Zhang et al 2021, Food and agro-product quality evaluation based on spectroscopy and deep learning: A review, 

Trends in Food Science & Technology Vol. 112, 431-441, https://doi.org/10.1016/j.tifs.2021.04.008“

“X. Zhang et al 2024, Advanced chemometrics toward robust spectral analysis for fruit quality evaluation, Trends in Food 

Science & Technology Vol. 150, 104612  https://doi.org/10.1016/j.tifs.2024.104612 “

“P. Mishra et al 2022,Deep learning for near-infrared spectral data modelling: Hypes and benefits, Trends in Analytical 

Chemistry, Vol 157, 116804, https://doi.org/10.1016/j.trac.2022.116804”

https://doi.org/10.1177/09670335231173140
https://doi.org/10.1016/j.tifs.2021.04.008
https://doi.org/10.1016/j.tifs.2024.104612
https://doi.org/10.1016/j.trac.2022.116804


Convolutional Neural Networks in 1D
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The task: Dry Matter (DM) content in fruit

▪ DM is closely related to the quantity of sugar and starch content and therefore an overall indicator of fruit’s quality 

▪ Vis-NIR spectrometry and Chemometrics is nowadays widely used to assess DM in several fruits

The question
Can we develop a CNN architecture for the task of DM prediction that is data set / fruit independent?

▪ The most promising models for this task are based on convolutional neural networks (CNNs) with one to three conv. layers.

Walsh, K. et al 2020, PBT 168

▪ Current CNN downsides are related with model complexity and lack of a standard architecture for the task (results are 
usually data set dependent)

Walsh, J. et al 2023, JNIRS Vol.3

Mishra, P. et al 2022, TrAC 157

Luo, N. et al 2024, JFCA 128

Hypothesis
“If we train a CNN model on a broad data set of different fruit, the intrinsic variability of the data set will eventually lead to a DL
model that can generalize better. This means that we should be able to create a global CNN for the task to DM prediction. ”



Study case: Deep tutti-frutti I and II 

Multifruit dataset

▪ 2nd derivative Vis-NIR spectra from: 
Apple, Kiwi, Mango, and Pear
Range: 735 nm to 1050 nm from
different Felix F750 spectrometers 
n = 2997

▪ Dry matter content

Dry matter prediction on a multi-fruit data set using CNNs

t-distributed Stochastic 

Neighbour Embedding

Passos, D., Mishra, P. 2023, Chemo. Int. Lab. Syst. 243

D. Passos 2025, Spec. Acta A: Mol. Biomol. Spec 337, 5, 126068



CNN optimization for 2 architectures: Regression (DM), Regression (DM) + Classification (Fruit)

Optimizable hyperparameters:
▪ Number of Conv. layers (1-3)

▪ Number of conv. filters

▪ Width of conv. filters

▪ Number of Dense layers (1-3)

▪ Number of units in dense layers

▪ Use dropout regularization

▪ Dropout rate

▪ Strength of L2 regularization

▪ Mini-batch size

Fixed hyperparameters:
▪ Activation functions (ELU)

▪ Conv. filter stride = 1

▪ Padding = ‘valid’

▪ Weight initialization = ‘he_normal’

Develop a hyperparameter optimization (HPO) and neural architecture search (NAS) pipeline that allows to find 
promising CNN architectures using:

❖ Randomization of initial conditions of training (different random weights initialization)

❖ Different training strategies (cross-fruit validation and 5-fold cross-validation) 

❖ Several initial base architectures were explored allowing for a more guided HP optimization

❖ Additional validation on external data

Models implemented in python using tensorflow.keras and optimized using the Optuna library

Zela, A. et al 2018, ArXiv abs/1807.06906



CNN NAS+Hyperparameter Optimization Loop
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Training strategies for HPO
Strategy 1 – Cross-fruit validation, fixed seed in weights initialization

Strategy 2 – 5-fold cross validation, fixed seed in weights initialization

Strategy 3 – 5-fold cross validation, random seed inweights initialization
9 different CNN architectures generated



CNN NAS and HPO done for different objective generated several (9) architectures

Different number of layers, different number filters, etc…

Models performance similar with little variance between results but enough to rank them (best RMSE = 0,61 ; PLS RMSE =  0,89)

Code available at: https://github.com/dario-passos/DeepLearning_for_VIS-NIR_Spectra

CNN 1

CNN 2C

CNN 1B



Results (multifruit test set)

Additional chemometric models for comparison

▪ PLS  ( LV = 7), optimized using 5-fold cross validation 

▪ LW-PLS (LV = 13 and λ = 0.5), optimized using 5-fold cross validation

Accuracy for class of fruit ~ 99% for all classification models



Results (single fruit test set)

Global CNN (trained on multifruit data) vs Global PLS (trained on multifruit data) vs Individual PLS (trained on individual fruit data)

Puneet Mishra, Wageningen University and ResearchAnderson, N., et al 2020, PBT 168

1448 samples (Australian mango data set, season 2018) 965 samples (mango from Brazil, season 2023)

Results (2 external mango data sets)



Model performance vs training set size Interpretability (Shapley values, LIME, RC)

Interpretability: GradCAM scores per fruit class (CNN1B)



CNN filter analysis: same architecture (CNN1/B) optimized under CV strategies

Cross fruit validation

Calibration Validation

Filter width = 3, the CNN relied in narrow bands 
(less relevant band overlap between Cal and Val 
samples)

Use of Dropout layer (0,54) and L2 regularization 
= 0,0735

Need to use two Dense layers, indicates more 
difficulty to combine features from Cal samples to 
predict Val samples

4 X

5-fold cross validation

Calibration Validation

Filter width = 35, the CNN relied in wider 
spectral regions and resembles a high-
pass/edge detection filter that tends to 
emphasize transitions or amplitude changes

No Dropout layer and lower L2 regularization = 
0,0295

Only one Dense layer used

5 X



CNN explainable “advantages” in NIR (supported by the literature)

i) Convolutional layers perform a “sort of” data-driven optimized preprocessing of the input data and sometimes 

even mimic classical preprocessings (derivatives, smoothing, etc.)

ii) In heterogeneous datasets (e.g. multiple batches, samples types, etc.) CNNs tend to rely on robust features 

across sample groups (informative variable selection across different sample domains)

iii) Certain types of peak shifts (e.g. related to temperature fluctuations) are easier to account for due to filter 

operations or the use of pooling layers.

iv) In deeper models, CNNs learn hierarchical abstractions by nonlinearly combining low-level features. With 

piecewise-linear activations (e.g. ReLU), certain architectures effectively implement a piecewise-linear fit in 

the transformed feature space.

v) Multitask predictions and easier fusion of data from different modalities (e.g. spectra + image).

“Cui & Fearn 2018, Chem. Intel. Lab. Sys.182 (2018) 9–20, 

https://doi.org/10.1016/j.chemolab.2018.07.008 “

Filters works as 1st derivative preprocessing

“D. Passos 2025, Spec. Acta A: Mol. Biomol. Spec 337, 5, 126068, 

https://doi.org/10.1016/j.saa.2025.126068 “ 

Some filters work as symmetric 2nd derivative, others 
as data-specific hierarchical feature extractors…  

“X. Zhang 2020, Analytica Chimica Acta 1119, 41e51, 

https://doi.org/10.1016/j.aca.2020.03.055 “

Some filters work as baseline removal… Predict temperature to enhance SSC predictions…  

“J. Martins et al 2023,Postharv Bio. Tech, 199, 112281, 

https://doi.org/10.1016/j.postharvbio.2023.112281 “ 

https://doi.org/10.1016/j.chemolab.2018.07.008
https://doi.org/10.1016/j.saa.2025.126068
https://doi.org/10.1016/j.aca.2020.03.055
https://doi.org/10.1016/j.postharvbio.2023.112281


Conclusions

▪ Optimized global CNN models (different architectures) provide lower RMSECV in DM prediction than global PLS and global 

LW-PLS

▪ CNN model trained for regression and classification present 99% accuracy in fruit classification without notable decrease in 

performance on the regression task.

▪ Global CNN (trained on multifruit data) surpasses local PLS model in 3 out of 4 fruit sub-sets

▪ The optimized CNNs show good generalization when applied to truly external data sets (2 different mango spectral samples).

▪ Performance of CNNs (on regression) surpass PLS when the number of training samples increases above 400 ~ 500.

▪ Interpretability is possible using techniques such as Shapley values, Grad-CAM scores, etc.

PROS

CONS

▪ Optimization is computationally demanding

▪ Still no silver bullet, i.e., we still haven’t found the perfect CNN architecture for this type of task (assuming it exists!)

▪ Shallow models, maybe not complex enough to capture all the variability in this type of multi-fruit data set?

Code available at: https://github.com/dario-passos/DeepLearning_for_VIS-NIR_Spectra



https://www.uco.es/investigacion/proyectos/sensaifood/

https://www.cost.eu/actions/IG19145/

sensAIfood project (IG 19145)

Artificial intelligence methods for spectral data processing to solve food fraud and authenticity issues

https://www.uco.es/investigacion/proyectos/sensaifood/
https://www.cost.eu/actions/IG19145/
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