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Chemometric applications in the food industry (Fruit as an example)

NIR + Chemometrics — Non-destructive, cheap methodology and fast acquisition times are attractive points for food quality control

PREDICTED PROPERTIES:

= Dry matter content

= SSC (Soluble Solid Content)

= Firmness, Acidity, Protein, etc...
= QOrigin control
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Literature supported claims of CNN advantages in NIR Chemometrics

CNN tend to outperform many traditional (linear) methods (PLS, SVM, MLR, etc.) especially in the presence of
complex spectra (e.g. biological samples, food products, etc.).

The 4 reviews below present several tens of examples...
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Rer]| “X. Zhang et al 2021, Food and agro-product quality evaluation based on spectroscopy and deep learning: A review,
B Trends in Food Science & Technology Vol. 112, 431-441, https://doi.org/10.1016/.tifs.2021.04.008"

’? “P. Mishra et al 2022,Deep learning for near-infrared spectral data modelling: Hypes and benefits, Trends in Analytical
L[g Chemistry, Vol 157, 116804, https://doi.org/10.1016/].trac.2022.116804”

Rer| . Walsh et al 2023, Review: The evolution of chemometrics coupled with near infrared spectroscopy for fruit
B3| quality evaluation..., JNIR 2023, Vol. 31(3) 109-125, https://doi.ora/10.1177/09670335231173140
REr |
=

Rer]| “X. Zhang et al 2024, Advanced chemometrics toward robust spectral analysis for fruit quality evaluation, Trends in Food
Science & Technology Vol. 150, 104612 https://doi.org/10.1016/].1ifs.2024.104612



https://doi.org/10.1177/09670335231173140
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Convolutional Neural Networks in 1D
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The task: Dry Matter (DM) content in fruit

= DM is closely related to the quantity of sugar and starch content and therefore an overall indicator of fruit’s quality

= Vis-NIR spectrometry and Chemometrics is nowadays widely used to assess DM in several fruits
Walsh, K. et al 2020, PBT 168

= The most promising models for this task are based on convolutional neural networks (CNNs) with one to three conv. layers.
Walsh, J. et al 2023, JNIRS Vol.3

= Current CNN downsides are related with model complexity and lack of a standard architecture for the task (results are

usually data set dependent) Mishra, P. et al 2022, TrAC 157
Luo, N. et al 2024, JFCA 128

The question

Can we develop a CNN architecture for the task of DM prediction that is data set / fruit independent?

Hypothesis

“If we train a CNN model on a broad data set of different fruit, the intrinsic variability of the data set will eventually lead to a DL
model that can generalize better. This means that we should be able to create a global CNN for the task to DM prediction. ”



Study case: Deep tutti-frutti | and Il Passos, D., Mishra, P. 2023, Chemo. Int. Lab. Syst. 243

Dry matter prediction on a multi-fruit data set using CNNs D. Passos 2025, Spec. Acta A: Mol. Biomol. Spec 337, 5, 126068
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CNN optimization for 2 architectures: Regression (DM), Regression (DM) + Classification (Fruit)

Develop a hyperparameter optimization (HPO) and neural architecture search (NAS) pipeline that allows to find
promising CNN architectures using: Zela, A. et al 2018, ArXiv abs/1807.06906
< Randomization of initial conditions of training (different random weights initialization)
** Different training strategies (cross-fruit validation and 5-fold cross-validation)

% Several initial base architectures were explored allowing for a more guided HP optimization
¢ Additional validation on external data

Fixed hyperparameters:
= Activation functions (ELU)

put 105) -~ = Conv. filter stride = 1

[nputLayer -—h- ConvlD | elu u Paddlng = ‘valid’
*_1 = Weight initialization = *he_normal’
! ConvID | el Optimizable hyperparameters:
e H Regression (1) = Number of Conv. layers (1-3)
. A _ N R — T R — . . Dense | linear = Number of conv. filters
ConvID | clu -—I- Flatten —I- Dense | chu —l-- Dropout —lr Dense | clu + Dropout —p— ])umu] ch ({' ___________ 1 = Width of conv. filters
erer b Receeeidecend cecmeciieed beeiecdineed ceiieneendt i denesd I "1: Dense -1.~|'1|11;L.\i

. _ | = Number of Dense layers (1-3)
Classification (4) = Number of units in dense layers
= Use dropout regularization

= Dropout rate

= Strength of L2 regularization

= Mini-batch size

Convolutional Block Dense Block

Models implemented in python using tensorflow.keras and optimized using the Optuna library



CNN NAS+Hyperparameter Optimization Loop
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Training strategies for HPO
Strategy 1 — Cross-fruit validation, fixed seed in weights initialization

Strategy 2 - 5-fold cross validation, fixed seed in weights initialization 9 different CNN architectures generated
Strategy 3 - 5-fold cross validation, random seed inweights initialization



CNN NAS and HPO done for different objective generated several (9) architectures

Different number of layers, different number filters, etc...
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Additional chemometric models for comparison

= PLS ( LV =7), optimized using 5-fold cross validation
= LW-PLS (LV = 13 and A = 0.5), optimized using 5-fold cross validation

Results (multifruit test set)

Model HPO objective function  Single model on Single model on Average of 10 models on Average of 10 models on Ensemble of 10

Train Set Test Set Train Set Test Set models on Test

Set
RMSECV RMSE R? RMSE R? RMSE + std R? RMSE + std R? RMSE R’

CNN-R_v1 1.109 0.98 0.794 0.99 0.785 0.818 = 0.003 0.856 0.791 = 0.004 0.863 0.791 0.863
CNN-R_V1B 0.665 0.613 0.919 0.619 0.916 0.629 = 0.009 0.915 0.631 = 0.013 0.913 0.602 0.92]1
CNN-R v1C 0.658 0.607 0.921 0.625 0.914 0.635 = 0.023 0.913 0.643 £ 0.023 0.909 0.604 0.92
CNN-R_v1D 0.649 0.612 0.919 0.611 0.918 0.624 £ 0,035 0.916 0.622 = 0,027 0.915 0.596 0.922
CNN-R_V1E 0.643 0.565 0.931 0.605 0.920 0.549 + 0.009 0.935 0.614 + 0.011 0.917 0.595 0.922
CNN-R v1F 0.985 0.843 0.847 0.861 0.837 0.774 = 0.053 0.871 0.771 £ 0.052 0.869 0.699 0.893
CNN-RC_v2 0.604 0.614 0.919 0.625 0.914 0.632 = 0.008 0.914 0.634 = 0.008 0.912 0.599 0.921
CNN-RC_v2B 0.659 0.611 0.920 0.618 0.916 0.620 + 0.012 0.917 0.635 = 0.015 0.912 0.599 0.92]
CNN-RC v2C 0.645 0.589 0.925 0.612 0.918 0.565 = 0.030 0.931 0.695 = 0.027 0.894 0.612 0.918
PLS (LV = 7) 0.914 0.904 0.824 0.892 0.826
LW-PLS (LV = 13 and A = 0.5)  0.699 0.515 0.943 0.687 0.897

Accuracy for class of fruit ~ 99% for all classification models



Results (single fruit test set)

Global CNN (trained on multifruit data) vs Global PLS (trained on multifruit data) vs Individual PLS (trained on individual fruit data)

Model Apple 5 Kiwi @ Mango 5 Pear 6

RMSE R? RMSE R? RMSE R? RMSE R?
Model CNN-R_V1E 0.580 0.857 0.736 0.951 0.557 0.917 0.565 0.887
Global PLS (7) 0.745 0.821 1.328 0.878 0.694 0.872 0.944 0.693
Individual PLS 0.574 0.861 0.908 0.927 0.678 0.879 0.616 0.872

#LV = (5, 8, 7, 7)

Results (2 external mango data sets) C%G

1448 samples (Australian mango data set, season 2018) 965 samples (mango from Brazil, season 2023)
Anderson, N., et al 2020, PBT 168 Puneet Mishra, Wageningen University and Research
Model Single model on ~ Average of 10 models on  Ensemble of 10 models on  Single model onnew  Average of 10 models on Ensemble of 10
Anderson’s Anderson’s mango test Anderson’s mango test Puneet mango data new Puneet mango set models on new
mango test set set set set Puneet mango set
RMSE R2 RMSE £+ STD R2 RMSE R2 RMSE R2 RMSE £ STD R2 RMSE R2
CNN-R vIB 1.172 0.807 1.214 +0.097 0.792 1.173 0.807 1.309 0.616 1.311 + 0.095 0.613 1.286 0.631
CNN-R vIC 1.186 0.803 1.419 £ 0.271 0.707 1.349 0.744 1.416 0.551 1.280 + 0.105 0.630 1.242 0.654
CNN-R vID 1.215 0.793 1.395 £ 0.056 0.726 1.358 0.741 1.276 0.635 1.319 + 0.066 0.609 1.286 0.630
CNN-R VvIE 1.358 0.741 1.315+0.110 0.756 1.284 0.769 1.201 0.677 1.247 + 0.036 0.651 1.234 0.659

PLS (LV=7) 1.331 0.803 1.535 0.512




Model performance vs training set size

A)

Test RMSE

Interpretability: GradCAM scores per fruit class (CNN1B)
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CNN filter analysis: same architecture (CNN1/B) optimized under CV strategies

Reshape
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CNN explainable “advantages” in NIR (supported by the literature)
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Convolutional layers perform a “sort of” data-driven optimized preprocessing of the input data and sometimes
even mimic classical preprocessings (derivatives, smoothing, etc.)

In heterogeneous datasets (e.g. multiple batches, samples types, etc.) CNNs tend to rely on robust features
across sample groups (informative variable selection across different sample domains)

Certain types of peak shifts (e.g. related to temperature fluctuations) are easier to account for due to filter
operations or the use of pooling layers.

In deeper models, CNNs learn hierarchical abstractions by nonlinearly combining low-level features. With
piecewise-linear activations (e.g. ReLU), certain architectures effectively implement a piecewise-linear fit in
the transformed feature space.

Multitask predictions and easier fusion of data from different modalities (e.g. spectra + image).

“Cui & Fearn 2018, Chem. Intel. Lab. Sys.182 (2018) 9-20, REF|| “D. Passos 2025, Spec. Acta A: Mol. Biomol. Spec 337, 5, 126068,
https://doi.org/10.1016/j.chemolab.2018.07.008 “ = https://doi.org/10.1016/j.s3a.2025.126068
Filters works as 1st derivative preprocessing Some filters work as symmetric 2nd derivative, others

as data-specific hierarchical feature extractors...

“X. Zhang 2020, Analytica Chimica Acta 1119, 41e51, rer] J. Martins et al 2023,Postharv Bio. Tech, 199, 112281,
https://doi.ora/10.1016/j.aca.2020.03.055 “ B3| https://doi.org/10.1016/j.postharvbio.2023.112281

Some filters work as baseline removal... Predict temperature to enhance SSC predictions...



https://doi.org/10.1016/j.chemolab.2018.07.008
https://doi.org/10.1016/j.saa.2025.126068
https://doi.org/10.1016/j.aca.2020.03.055
https://doi.org/10.1016/j.postharvbio.2023.112281

Conclusions

PROS

= Optimized global CNN models (different architectures) provide lower RMSECV in DM prediction than global PLS and global
LW-PLS

= CNN model trained for regression and classification present 99% accuracy in fruit classification without notable decrease in
performance on the regression task.

= Global CNN (trained on multifruit data) surpasses local PLS model in 3 out of 4 fruit sub-sets
= The optimized CNNs show good generalization when applied to truly external data sets (2 different mango spectral samples).
= Performance of CNNs (on regression) surpass PLS when the number of training samples increases above 400 ~ 500.

» |nterpretability is possible using techniques such as Shapley values, Grad-CAM scores, etc.

CONS
= QOptimization is computationally demanding

= Still no silver bullet, i.e., we still haven’t found the perfect CNN architecture for this type of task (assuming it exists!)
= Shallow models, maybe not complex enough to capture all the variability in this type of multi-fruit data set?

Code available at: https://github.com/dario-passos/DeeplLearning_for_VIS-NIR_Spectra



S
sensAlfood
“J

sensAlfood project (IG 19145)

Artificial intelligence methods for spectral data processing to solve food fraud and authenticity issues

https://www.uco.es/investigacion/proyectos/sensaifood/

https://www.cost.eu/actions/IG19145/



https://www.uco.es/investigacion/proyectos/sensaifood/
https://www.cost.eu/actions/IG19145/
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