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Questions

|s classic DoE obsolete?

If not, when to use which method?

Why does it feel so old-fashioned?

What Is your opinion?
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JMP DoE example
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Bayesian optimisation (BO)

Presentation of Phil Kay (JMP)

Bayesian Optimization

Why? What pains could this relieve for experimenters?

*We don’t like lots of runs upfront, especially “wasted” Bayesian Optimization

runs in “bad” factor regions
We don’t know how complex the system might be

What is it?
- Goal-oriented, model-agnostic sequential experiments

) * “Active Learning”, “Adaptive Learning”
*We need a solution, not a model, and fast! An “Al recommender” for product and process
innovation

* A revolution in how we experiment for innovation?
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BO example

‘... more than 20 runs in total”
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Comparison: Sequential DoE

Rapeseed oil Sophorolipid (g/f
Glucose (g/L) (mL/L) Mitrogen (g/L) L)

3 Steps 154 184 g3 395
 Full factorial design, 2 replicates: 16 runs N

- E a7 15.9 o 1.1

14 additional runs : 1 50 50 75 143

. » 2 150 150 2.5 271

32 detailed ones - - = T = e

» 4 L0 =0 2.5 17.7

. 5 150 &0 7.5 14.7

L [ 50 150 25 259

L I 50 50 2.5 18.6

L 8 150 0 2.5 12.6

. 9 S0 150 1.5 11.6

We need a solution, not a model, and fast! + 10 150 50 25 13.2

- 11 S0 S0 Fi 12.3

] 12 150 50 1.5 16.7

- 12 Lo 150 2.5 23.0

. 14 150 150 7.5 12.2

. 15 180 150 5 17.5

. 16 150 150 2.5 29.4
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DoE philosophy

Box / Hunter / Hunter:
 In an ongoing investigation, a rough rule is that only a portion (say 25%)

of the experimental effort and budget should be invested in the first design.
» Perfection is not possible: it's always an approximation.

< Observation (nowadays):

DoE is propagandised as “be on the safe side”
=» duplicate runs

=» tolerance intervals at lab scale

=» power considerations
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“Classic DoE"?

« That a conclusion reached in one environment (say the laboratory) will apply in a different
environment (say the full-scale process) is based not on statistical reasoning but what Deming
called ,a leap of faith.” Good statistics and subject matter knowledge can narrow the chasm but
not eliminate it.

« Among the factors to be considered there will usually be the vital few and the trivial many.
(J. M. Juran)

The need to work closely with subject matter specialists.

The value of a sequential approach to problem solving and in particular the
sequential assembly of experimental designs.
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2nd example: PCR (https://virtual-pcr.ico2s.org/pcr)

We want to improve the PCR reaction:

BO (LinkedIn post of Morten Borman Nielsen): A method used to chemically multiply DNA
12 factors
= Aim > 500 ng/uL - —

—e

A little DNA Lots of DNA

We have a solution after 25 runs, but maybe it is
possible to reach an even better result?

PCR reaction

And after 35 runs we have a very good solution:
Can your present strategy handle this problem?

If not, you might want to add Bayesian
Optimization to your scientific toolkit ;)
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My strategy ("granny DoE”)

Yield
[ng/muL.!
« Screening: Plackett-Burman (12 runs) 302.5 _
: : : 99.2 Subject matter expert:
» Risky: D-optimal design for 2 factors = g . od
- « domain knowledge +
(8 runs, max. 194 ng/uL X ) 0.1 _ J
g _ 2 reference literature
* 2n Stage Yield 9 d . f t
. : reducing factors
D-optimal design for 4 factors (6 runs) [ng/muL.! istic gt
N 579.2 « realistic factor ranges
* Optimisation (RSM): Yield 233.3 _ o 9
. ngmul] | 2184 * setting priorities
Full factorial for 2 factors (9 runs) s 2042 Jp _
: . ggp 1989 (too expensive, too long)
« Confirmation ciny 1329
=» 36 including 8 unnecessary; 02
=> already 2" run of 2nd stage > 500 ng/pL ==
216.1
198.9
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Comparison TAQ < Phusion:
Less purity with increasing primer

Curve plot
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Benefits: BO < Classic

BO. “Classic”

* Running process improvement « Lab scale experiments starting from O
(“A process should be routinely operated =» statistical tools
SO as to produce not only product but (model reduction < factor importance)
information on how to improve the product.”) =» visualisation

» Convincing people (few parameters: response surface)
(< “trial & error”’, OFAT) « Convincing people (& OFAT...?)

automated lab systems

< depending on the aim Validation context
(Design space, robustness < FDA?)
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Number of runs?

Solution:

expertise)

=>» radical risk-based approach
(including subject matter

& ICH / FDA! \/
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Yield

[ng/muL.!

227

59.4
0.2

0.1

Yield

[ng/mulL.!

Yield 233.3

218.4

[ngfmul] 204.2

682 198.9

c15.- TR
580.8
579.2

490.4
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Ongoing

Expected Run Time
(ERT) for BO

(work of Morten
Borman Nielsen)
=>» comparison

to “classic” DoE

1757

150 -

Total runs before termination

N
9]

Distribution of total runs by initial point strategy
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6-dimensional system, solution space: 1/3165 = 0.032 %
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Initial space-filling points

30.5.2025 "Classic" DoE vs. Bayesian Optimsation / Active Learning: a risk-based approach

www.fhnw.ch/lifesciences

15


https://www.linkedin.com/posts/morten-bormann-nielsen_bayesianoptimization-activity-7310193864387059713-G0KB?utm_source=share&utm_medium=member_desktop&rcm=ACoAAANPdxYByBW-wmXbP-PuI7xkpY_xD8MT0xw
https://www.linkedin.com/posts/morten-bormann-nielsen_bayesianoptimization-activity-7310193864387059713-G0KB?utm_source=share&utm_medium=member_desktop&rcm=ACoAAANPdxYByBW-wmXbP-PuI7xkpY_xD8MT0xw

n w University of Applied Sciences and Arts Northwestern Switzerland member Of
School of Life Sciences swissunive rSItles

What Is your opinion?

Is classic DoE obsolete?

If not, when to use which method?

Why does it feel so old-fashioned?
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